CS5251

Great Ideas

in
Theoretical

Computer Science

Strings, Encodings, Problems

Covid Puzzle

Neighbors in directions
N,S W,E.

Initially, some of the squares
are infected.

It a square has 2 or more
infected neighbors,
it becomes infected.

What is the min number ot infected squares
needed initially to infect the whole board?

iInput
data

—

-

o

"computer”

~

J

What is computation?

—

Next Few Chapters

output
data

What basic properties does it have?

Real World Abstract World

Something of Mathematical

interest Model
logic
o New
Applications

Knowledge

Real World Abstract World

Mathematical

Computation Vodel

logic

New
Applications

Knowledge

iInput
data

—

-

o

"computer”

~

J

output
data

4)

iInput
data

output

—| "computer” |—
P data

- J

How do we mathematically represent data?

How we represent information

e.g. written communication:

—_— "apple’
—) "car"
—_— "happy’

—p "three" or "3"

English alphabet

Z — {a’7b7c7d7e7f7g7h7i7j7k717m7n707p7q7r7s7t7u7V7W7X7y7Z}
Turkish alphabet

Z — {a’7b7C7§7d7e7f7g7g7h71717.] 7k717m7n70707p7r7s7§7t7u7u7V7Y7Z}

What it we had more symbols?

What it we had less symbols?

Binary alphabet
> =1{0,1}

alphabet: a non-empty and finite set.
(usually denoted by).

symbol/character: an element of an alphabet.

string/word: a finite sequence of symbols from 2.

A string is denoted by a,a,...a,, where each a; € X.

(the definition sometimes includes infinite sequences)

Example: Some strings over £ = {0,1}:

€ 0 1 01 1011110101101111

Example: Some strings over X = {a,b,c}:

€ a b C ca caabcceab

Length of a string s:

| s | = the number ot symbols in s.

X * = set ot all finite-length strings over X.

Examples:
{0,1}* = {¢€,0,1,00,01,10,11,000,001,0010,...}

ta}* = {e,a,aa,aaa,aaaaq, ...}

What is an encoding scheme?

Z — {a’7b7c7d7e7f7g7h7i7j 7k717m7n707p7q7r7s7t7u7V7W7X7y7Z}

Objects/concepts String encoding
—_— apple
— car
< — happy

Does every object have a corresponding encoding?
o Can two objects have the same encoding?

Does every string correspond to a valid encoding?

encoding: given a set A of objects, an encoding of elements of A
is an injective function Enc: A — X*.

Fora € A, (a) denotes Enc(a).

a (a)
S I

A1234567890A

Warning: not all sets are encodable.

Examples A =N

» =1{0,1,2,3,4,5,6,7,8,9)
(36) = “36”

2 = {0,1)
(36) = “100100”

¥ =11}
(36) = “1111111111111111111111111111111111171”

o Does X affect encodability?

Examples A =7

»={-,01,23,4,5,6,7,8,9}
(—36) = “ — 36

» = {0,1}
(—36) = “1100100”

¥ = {117

Examples A =N xN

Z — {O, 172737475767778797#}
((3,36)) = (3,36) = 3430

> = {0,1}

ldea: encode all symbols abov

e using 4 bits (why 4?)

0 — 0000 4 — 0100
1 — 0001 5 — 0101
2 — 0010 6 — 0110
3 — 0011 7 — 0111

& — 1000
9 — 1001
+#+ — 1010

(3,36) = “0011101000110110”

Examples A = all undirected graphs

G
1 4

U

(GY ="V={1,2,3,4,5, 6}
E ={1,2},{2,3}, {3,4}, {1,4}, {5,6}}"

Examples A = all Python functions

def i1sPrime(N):
if (N < 2):
return False
for factor in range(2, N):
if (N % factor == 0):
return False
return True

(isPrime) =

“def isPrime(N):\n if (N <2):\n return False\n for factor in
range(2, N):\n if (N % factor ==0):\n return False\n return True”

o Does | 2| matter?

Going from | 2| =k to | Y] =Z:

encode every symbol of X using t bits,

where t = [lo] .

A word of length tn

A word of length n
over 2 .

over X'

o Does | 2| matter?

I
|

R R N
N — O

NOONONOTRROWN—0

Z

0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100

Binary vs Unary

€

1
11
111
1111
11111
111111
1111111
11111111
111111111
1111111111
11111111111
111111111111

o Does | 2| matter?

Binary vs Unary

n haslength |[log,n| + 1 in binary
log, n =

n haslength |log,n| + 1 in base k

log, n

log, k

n has length n in unary

o Unary is exponentially longer than other bases!

o Which sets are encodable?

Encodability = Countability

(will see this later)

o What about uncountable sets?

Approximate.

Summary So Far

Alphabet X, String/word, o

Encoding of a set A: injective function Enc: A — X%,

Encodable = Countable

Alphabet doesn't matter much as long as |X| > 1.

Next Few Chapters

. 4)
|nput

data

output

—| "computer’ |—
data

_ J

What is computation?
What is an algorithm?

How can we mathematically define them?

Next Few Chapters

4)

Input . . output
. —| "computer |— ,
string .) string

What is computation?
What is an algorithm?

How can we mathematically define them?

Let's lay the groundwork...

4)

Input)) output
. —>| computer |— .
string .) string

Reasonable assumptions to start with:

- Computer is deterministic

- Computation is a finite process

- Input can be any finite-length string
- For all inputs, there is an output

- Output is a finite-length string

How can we characterize

o the input/output behavior of a computer?

Input
®
string

-

o

"computer”

~

—

J

output
string

s computer just a function f: X% — X% 227

Function problem:
A function of the form f: X* — X*,

A computer/algorithm solves tfunction problem f

it its input/output behavior corresponds to f.

Function Problem Examples
> = {0,1}

Reverse function
110100 ~ 001011

Sort function
110100 —~ 000111

IsPrime
11111010 — O
11111011 —» 1

Example description of a function problem:

Given a natural number N, output True it N is prime,
and output False otherwise.

Input type: natural number

Output type: boolean

A function problem is a function
f:I—=5.

| = set of possible input objects (called instances)

S = set of possible output objects (called solutions)

4)

Input . output
—>{ |SPrime —
data data

4

Instance Solution

0 No
1 No
2 Yes
N 2 Vo S = {No,Yes}
4 No

251 Yes

(

~

Input output
data | + " data
\ 7
Instance Solution
0, 0 0
0, 1 1
1,1 2
I =N XN 2.9 A S =

2, 3 5
10, 1 11
199

100, 99

4)

Input
data

output

— Sorting —
J data

_ J

Instance

["vanilla”, "mind", "Anupam”, "yogurt", "doesn't"]

Solution

["Anupam”, "doesn't", "mind”, "vanilla", "yogurt"]

A function problem is a function
f:I—=5.

I = set of possible input objects (called instances)

S = set of possible output objects (called solutions)

In TCS, we don't deal with arbitrary types,
we deal with strings (encodings).

f: I — S

Enc Enc

f’:é*%i}*

/

Enc

Technicality: What if w € ¥* does not correspond to
an encoding of an instance?

o In TCS, there is only one type of data:
string

A convenient restriction:

Problems with 2 possible solutions.

Example: isPrime

Decision problem:

A function of the form f: 2* — {0,1}.
{False, True}

{Reject, Accept }
{No, Yes}

Why?

1. Simpler objects
2. Without loss of generality

1. Simpler objects

Language:
Any set L of finite-length strings over an alphabet X.
l.e.any set L C X%,

Examples X = {0,1}
L=¢g

L=2X%
L=1{0,1,00,11}

L ={e, 01,0011, 000111, ...}

1. Simpler objects

There is a one-to-one correspondence between
decision problems and languages.

f:2* - {0,1}
Instance Solution
) L =1e0,1,00, 11, 000, ...}
(0) 1 y*
1
1
Ul 0 L,/ e \
10 0 >
1)
(000 1
001 0

o/

2. Without loss of generality

o function problem = corresponding decision problem

Integer factorization problem:

Input: natural number N,

QOutput: prime factorization of V.

Decision version:

Input: natural numbers N and k,
Output: True iff N has a factor between 2 and k7

2. Without loss of generality

o function problem = corresponding decision problem

Integer factorization problem:

Input: natural number N,

QOutput: prime factorization of V.

Smallest factor problem:

Input: natural number N,

Output: smallest (prime) factor ot N.

Decision version:

Input: natural numbers N and k,
Output: True iff N has a factor between 2 and k7

Are all languages computable/solvable?

How can you prove a language is not solvable?

How do we measure the complexity of algorithms
solving languages?

How do we classity languages according to the
resources needed to solve them?

?

P = NP

