CS5251

Great Ideas

in
Theoretical

Computer Science

Deterministic Finite Automata 1

This Chapter and Next Chapter

. 4)
|nput

data

output

—| "computer’ |—
data

_ J

What is computation?
What is an algorithm?

How can we mathematically define them?

Can encode/represent data
(numbers, text, pairs of numbers, graphs, images,...)

with a finite-length (binary) string.

This Chapter and Next Chapter

4)

Input . . output
. —| computer |— .
string .) string

What is computation?
What is an algorithm?

How can we mathematically define them?

Terminology:

Computational Model

Machine = Computer

= Program = Algorithm

physical realization

Allowed rules tfor information processing.

An instantiation of the computational model.

(a specitic sequence of information processing rules)

instructions

mathematical representation

2 Assumptions:

1. No "universal machines".

4) 4) 4

+ iIsPrime Sort

2. We only care about decision problems.

This Chapter and Next Chapter

. 4)
|nput

string

Oorl

— ‘computer’ —
Reject or Accept

o J

What is computation?
What is an algorithm?

How can we mathematically define them?

This Chapter

Deterministic Finite Automata (DFA)

4)

tri -
strin j
g) Reject or Accept

Input

A restricted model of computation:

- limited memory

- reads input from left to right, and accepts or rejects.

State diagram of a DFA
> = {0,1}

State diagram of a DFA
> = {0,1}

0 1 ,
_>
0

State diagram of a DFA
> = {0,1}

State diagram of a DFA
2 =1{0,1} Input: 1010

| ,
-, o

State diagram of a DFA
2 =1{0,1} Input: 1010

0 1 0,1 1
_m

State diagram of a DFA
2 =1{0,1} Input: 1010

0]
_.

State diagram of a DFA
2 =1{0,1} Input: 1010

0]
_.

State diagram of a DFA
2 =1{0,1} Input: 1010

0 1 0,1 1
—(
0
RhOS

State diagram of a DFA
2 =1{0,1} Input: 1010

0]
_.

State diagram of a DFA
2 =1{0,1} Input: 1010

0]
_.

State diagram of a DFA
2 =1{0,1} Input: 1010

0 1 0,1 1
_> @
0
| o |

State diagram of a DFA
2 =1{0,1} Input: 1010

Decision: REJECT
0 1 0,1 1
_>
0
O o |

State diagram of a DFA
2 =1{0,1} Input: 10101

Decision: ACCEPT
0 1 0,1 1
_>
0
O o |

Anatomy of a DFA

states accepting

states

o at®
..... “““
Ny nt®
".. an®”

N | |
N | |
N |}

N |
N |
N |}

N |)

Ny ut®
N at®

transition rule: >
labeled arrows e
0
0 |

start/initial [g3)q.... .
state @009 N/ states

Detinition: Language solved by a DFA

-

Definition: Let M be a DFA and L C X* a language.

We say that M solves L it the following holds: decides

-ifw € L, M accepts w; computes

-itw & L, M rejects w.

Useful Notation:

L(M) = set of strings that M accepts.

L(M) is the language that M solves/decides/computes.

DFA Examples

L(M) = all binary strings with even number of 1’s

= {x € {0,1}* : x has an even number of 1's}

DFA Examples

M
0,1

=Wl
0,1

L(M) = all binary strings with even length

={xe {0,1}*: |x| iseven}

DFA Examples

LIM)= {xe {0,1}*: xendswitha O} U {e}

DFA Examples

> =1{a,b,c}
M a, b, c
d ‘
e o
—_— .—>
a, b

L(M) = 1

DFA Examples

> =1{a,b,c}

M

LM) = {a,b

DFA Examples

> =1{a,b,c}

LM) = {a,b,cb,cc}

oll.cs251.com

JANE o\
~(—=O—0

L(M) =

http://poll.cs251.com

Poll - Answer

JANE o\
~(—=O—0

L(M) =

Poll - Answer

i\ O JA
~O=O—0

L(M) =

Poll - Answer

JANE o\
~(—=O—0

L(M) =

Poll - Answer

1 , o 0

— —
0

L(M) =

Poll - Answer

S\ YA
~(—=O—0

L(M) = set of all strings ending in 00

't w ends with 00, M accepts.
It w does not end with 00, M rejects.

DFA construction practice
L=¢g

L=2xX%

L={110,101}

L={0,1}*\{110,101}

L={xe{0,1}*: xstarts and ends with same bit}
L={xe{0,1}*: |x| isdivisible by 2 or 3}
L={e110,110110,110110110,...}
L={xe€{0,1}*: xcontains the substring 110}

L={xe{0,1}*: 10 and 01 occur equally often in x}

DFA construction practice

?%O,l

L=

DFA construction practice

?%O,l

L=x*

DFA construction practice

L={110,101}

DFA construction practice

L={110,101}
(OO0
0 1

DFA construction practice

L={110,101}

(OO0
—
1
O ;
(/" (
\/ ”
0.1

DFA construction practice

L={110,101}
2O 000
0 1

All missing transitions go to a rejecting sink state.

DFA construction practice

L=1{0,1}*\{110,101}
~O—C+-0+0
0 1

DFA construction practice

L={0,1}*\{110,101}
OO0
—
0 1

DFA construction practice

L=1{0,1}*\{110,101}
-O—Q+-0+
0 1

All missing transitions go to an accepting sink state.

DFA construction practice

L={xe{0,1}*: xstarts and ends with same bit}
N, [\
O—C

J 0

= O—C
L
A o

Terminology:

Computational Model Allowed rules tfor information processing.

The Deterministic Finite Automaton computational model

Machine = Computer An instantiation of the computational model.

= Program = Algorithm (a specific sequence of information processing rules)

A Deterministic Finite Automaton (DFA)

DFA as a programming language

def foo(input):
1=0;
STATE 0:
if (1 == 1input.length): return False;
letter = 1nput[1];
1++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: go to STATE 1;

STATE 1:
if (1 == 1input.length): return True;
letter = 1nput[1];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘17: go to STATE 2;

input =

o[1[1]|1]1

DFA as a programming language

def foo(input):
1=0;
STATE 0:
(if (1 == 1nput.length): return False;)
letter = 1nput[1];
14++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

STATE 1:
if (1 == 1input.length): return True;
letter = 1nput[1];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘17: go to STATE 2;

input =

o[1[1]|1]1

DFA as a programming language

def foo(input):
1=0;
STATE 0:
if (1 == 1input.length): return False;

letter = 1nput[1];
1++;

switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: go to STATE 1;

STATE 1:
if (1 == 1input.length): return True;
letter = 1nput[1];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘17: go to STATE 2;

input =

o[1[1]|1]1

DFA as a programming language

def foo(input):
1=0;
STATE 0:
if (1 == 1input.length): return False;
letter = 1nput[1];
1++;

" switch(letter):
case ‘0’: go to STATE 0;
_ case ‘1°: goto STATE 1,

STATE 1:
if (1 == 1input.length): return True;
letter = 1nput[1];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘17: go to STATE 2;

input =

o[1[1]|1]1

DFA as a programming language

def foo(input):
=0: mput= | 0 [11 [1]1

STATE 0:
if (1 == 1input.length): return False;
letter = 1nput[1];

1++;
[switch(letter): A
case ‘0’: go to STATE 0;
_ case ‘1°: goto STATE 1, p
STATE 1:

if (1 == 1input.length): return True;
letter = 1nput[1];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘17: go to STATE 2;

DFA as a programming language

def foo(input):
1=0;
STATE 0:
if (1 == 1input.length): return False;
letter = 1nput[1];
1++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: go to STATE 1;

STATE 1:
if (1 == 1input.length): return True;
letter = 1nput[1];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘17: go to STATE 2;

input =

o[1[1]|1]1

Formal Definition

Formal definition: DFA

p
Definition: A deterministic finite automaton (DFA)

isa 5-tuple M =(0,2,0,qy, F) where:
- Q is a finite, non-empty set (called the set of states);

- X is a finite, non-empty set (called the alphabet);

- 0 is a function of the form o :EIX > — 0

(called the transition function);

- gp is an element of Q (called the start state);

- Fis a subset of O (called the set of accepting states).

Formal definition: DFA

M: (Q,E,é,qO,F)
Q — {qoa 41> 49>> Q3}

Formal definition: DFA

M: (Q,E,é,qO,F)
Q — {qoa 41> 49>> Q3}

2 =1{0,1}
0:0X2— (0 -
50
. 40 q1
q1
4>
43

Formal definition: DFA

M: (Q,E,é,qO,F)

Q — {qoa qv Q2a Q3}
> =1{0,1)

Formal definition: DFA

M = (Q, 2,0, qy F)
0 = 190 91-92- 93}
2 =1{0,1}
0:0X2— (0

5 0

do @ Y0 q1
W - 9 92
G
q3

Formal definition: DFA

M: (Q,E,é,qO,F)
Q — {qoa 41> 49>> Q3}

> ={0,1)
0:0X2— (0
0 0 1
40 4o qd1
qd1 4>)
4> q3 %)
qs3 4o %

o g is the start state

F = {QIa QZ}

Formal definition: DFA accepting a string

Useful Notation:

Forg € OQ,w € X*;

0*(g, w) = state we end up at when we start at ¢ and read w.

= 0(...0(0(0(g, W{), Ws), W3)..., W,).

p
Definition: We say DFA M accepts w if 6*(q,, w) € F.

Otherwise M rejects w.

Definition: Regular languages

-

Definition: A language L is called regular if

there is some DFA solving L.

The Big Question

o Are all languages regular?

All languages
P(ZF)

Reqgular languages

L = {110,101}
L={0,1}*\{110,101}
L={xe {0,1}*: xstarts and ends with same bit}
L={xe{0,1}*: |x| is divisible by 2 or 3}

L ={e110,110110,110110110,...}

L ={xe€{0,1}*: xcontains the substring 110}

L={xe {0,1}*: 10 and 01 occur equally often in x}

A non-regular language

How to choose a candidate non-regular language?

What are the key limitations of DFAs?

- Scans input once.

- Constant number of states.

(constant memory)

A non-regular language

-

Theorem: The language consisting of all strings

with an equal number of 0's and 1's is not regular.

A non-regular language

p
Theorem: The language L = {0"1": n € N} is

not regular.

L={e, 01,0011,000111, ...}

A non-regular language

p
Theorem: The language L = {0"1": n € N} is

not regular.

Intuition:

Seems DFA would need to remember # QO’'s it sees.

But it has a constant number of states.

(and no other way of remembering things)

Caretul:

L={xe{0,1}*:01 and 10 occur equally often in x} is regular!

A non-regular language

p
Theorem: The language L = {0"1": n € N} is

not regular.

A key component of the proof:
Pigeonhole principle (PHP)

L =1{0"1":n € N} is not regular - Proof idea
Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: 0000000000000000

Imagine some
q o o o
arbitrary transitions

L =1{0"1":n € N} is not regular - Proof idea

Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: T 0000000000000000

Imagine some

arbitrary transitions

L =1{0"1":n € N} is not regular - Proof idea
Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: (T)OOOOOOOOOOOOOOO

- @
Imagine some
arbitrary transitions

L =1{0"1":n € N} is not regular - Proof idea
Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: O(T)OOOOOOOOOOOOOO

-
Imagine some
q o o o
arbitrary transitions

o

L =1{0"1":n € N} is not regular - Proof idea
Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: OO(T)OOOOOOOOOOOOO
000

:
imagine some
—

arbitrary transitions

0 ()

L =1{0"1":n € N} is not regular - Proof idea
Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: OOO(T)OOOOOOOOOO()O
000

-
Imagine some
q ° ° °
arbitrary transitions

L =1{0"1":n € N} is not regular - Proof idea
Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: 0000000000000000

!
000

-
Imagine some
q o o o
arbitrary transitions

@ ©
00000

0000

L =1{0"1":n € N} is not regular - Proof idea
Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: OOOOOOOOOOOOOOOO
OOO

-
imag/ne some
q ° ° °
arbitrary transitions

000000 00000 0000

L =1{0"1":n € N} is not regular - Proof idea
Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: 0000000000000000 After 00 and 000000 we ended up

! in the same state ¢;.

000

For any string z,

0
€ ()()1()1 00z and 000000z
_} Imagine some OOOOOOIO]must end up in the same state.
arpitrary trarggié)ﬁf) 01

0011 and 00000011
must end up in the same state.
00 @ But: 0011 —> accepting state

00000
000000 0000 00000011 —> rejecting state

L =1{0"1":n € N} is not regular - Proof idea
Suppose a DFA with 6 states solves {0"1" : n € N}.

Input: 0000000000000000 € Y
0%
00 %
Odptrgnough holes
fpnaftthe pigeons.
_} Imagine some OOOOO%
arbitrary transitions

000000 %,

L ={0"1":n € N} not regular - Proof write-up

AFSOC d a DFA solving L. Let k be the number of states ot the DFA.
Consider the following set of k + 1 strings P = {¢, 0, 00, 000, ..., 0"},
By PHP, dx,y € P such that x and y end up in the same state.

So 3i,j, i #j, suchthat x =0" and y =0’ end up in the same state.
Therefore Yz € {0,1}*, 0’z and (/z end up in the same state.
However for z = 1/, 0’z =0'1" must end in an accepting state,

whereas since i # j, (/z=0/1" must end in a rejecting state.

This is the desired contradiction.

Strategy for proving a language is not regular

1. Set up a proof by contradiction:

Assume that the language is regular.
So a DFA with k states solves it.

2. Pick your pigeons: (Would P = {1, 11, 111, ...} work in previous proof?)
| N

| dentity k + 1 strings as the pigeons.

Two pigeons, x and y, must end up in the same state.
For any string z, xz and yz end up in the same state.

3. Reach a contradiction:

Find a string z such that exactly one of xz, yzisin L.

Exercise:

> =1{a,b,c}
Show L = {ca"b*" : n € N} is not regular.
L = {c,cabb,caabbbb, caaabbbbbb, ...}

Exercise:

> = {0}
Show L = {0* : n € N} is not regular.

L = {0, 00, 0000, 00000000, ...}

All languages

P(X*)

Reqgular languages

L = {110,101}
L={0,1}*\{110,101}
L={xe {0,1}*: xstarts and ends with same bit}
L={xe{0,1}*: |x| is divisible by 2 or 3}

L ={e110,110110,110110110,...}

L ={xe€{0,1}*: xcontains the substring 110}
L={xe {0,1}*: 10 and 01 occur equally often in x}

All languages
P(ZF)

Reqgular languages

-

L = {110,101}
L={0,1}*\{110,101}
L={xe {0,1}*: xstarts and ends with same bit}
L={xe{0,1}*: |x| is divisible by 2 or 3}

L ={e110,110110,110110110,...}

L ={xe€{0,1}*: xcontains the substring 110}

L={xe {0,1}*: 10 and 01 occur equally often in x}

