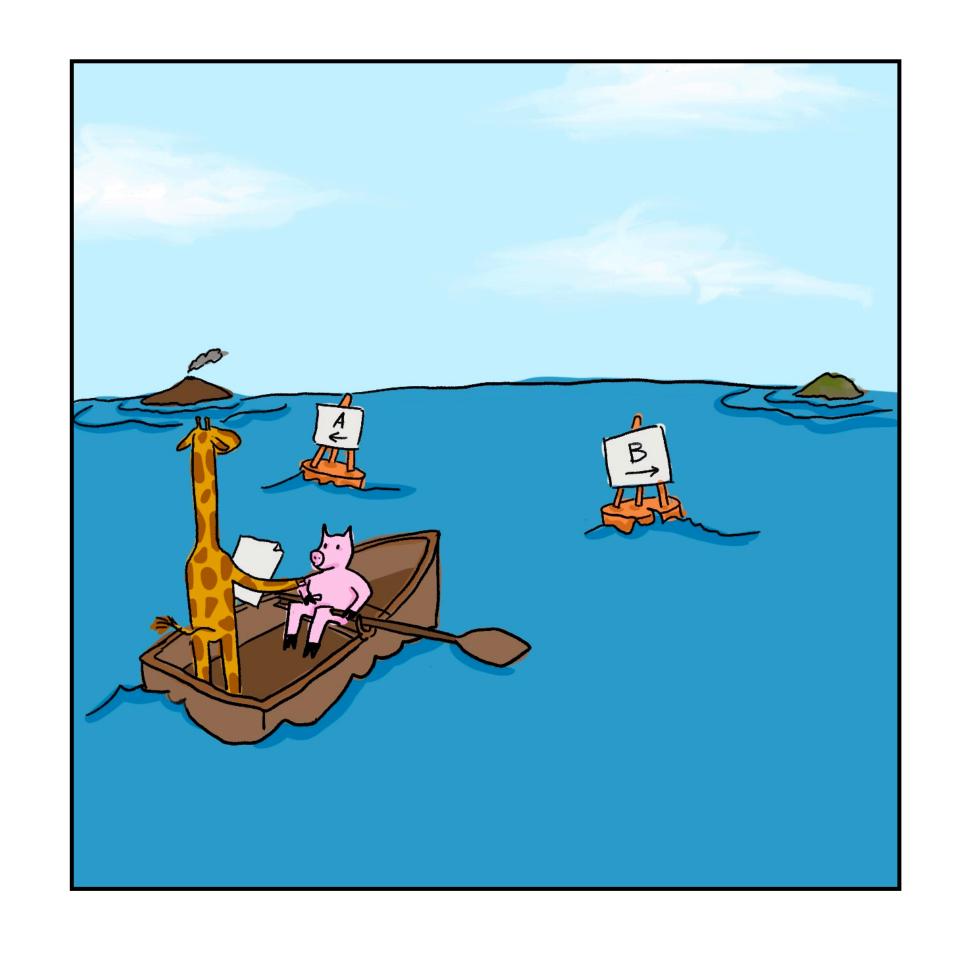
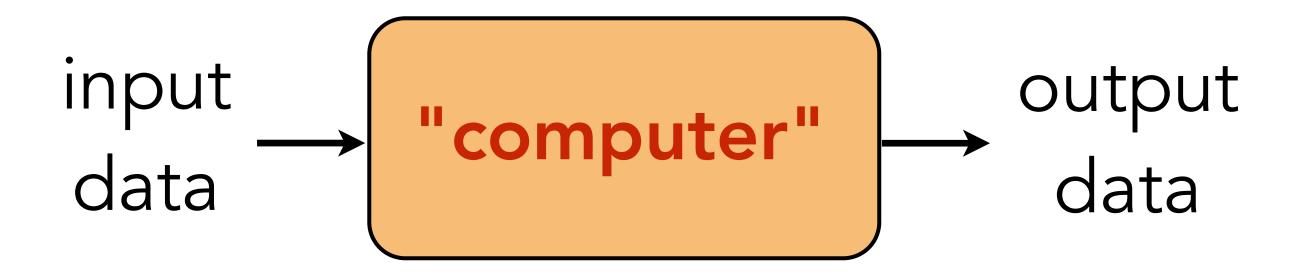
CS251

Great Ideas
in
Theoretical
Computer Science



Deterministic Finite Automata 1

This Chapter and Next Chapter



What is computation?

What is an algorithm?

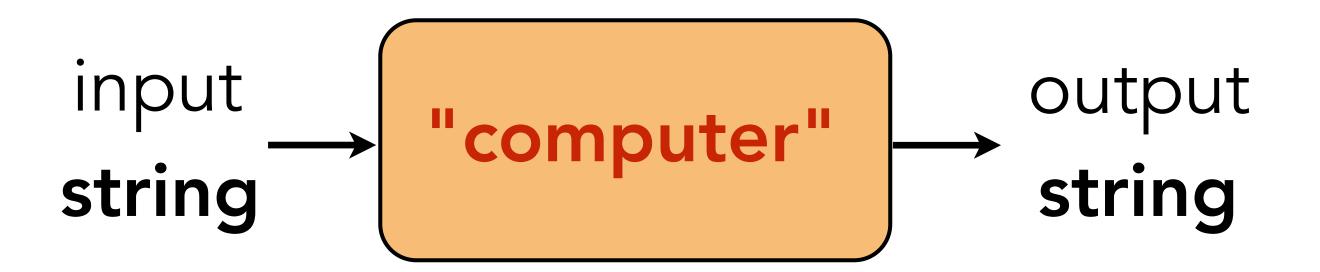
How can we mathematically define them?

Can encode/represent data

(numbers, text, pairs of numbers, graphs, images,...)

with a finite-length (binary) string.

This Chapter and Next Chapter



What is computation?

What is an algorithm?

How can we mathematically define them?

Terminology:

Computational Model

Allowed rules for information processing.

Machine = Computer

= Program = Algorithm

An instantiation of the computational model.

(a specific sequence of information processing rules)

physical realization

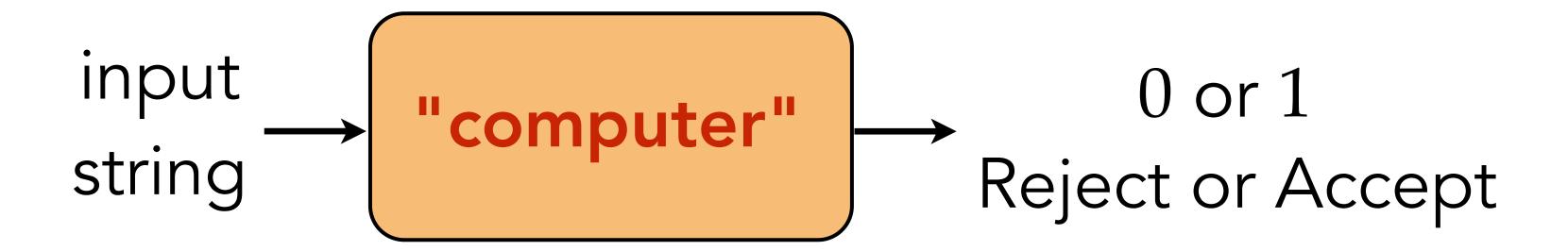
mathematical representation

2 Assumptions:

1. No "universal machines".

2. We only care about decision problems.

This Chapter and Next Chapter



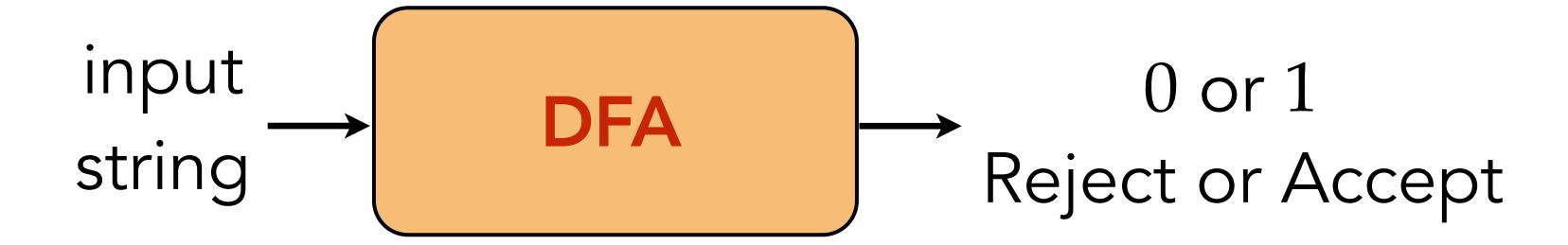
What is computation?

What is an algorithm?

How can we mathematically define them?

This Chapter

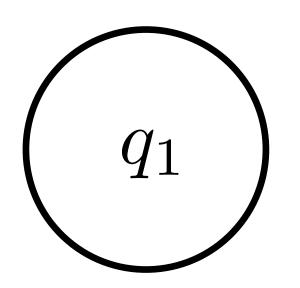
Deterministic Finite Automata (DFA)

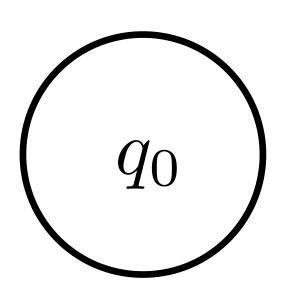


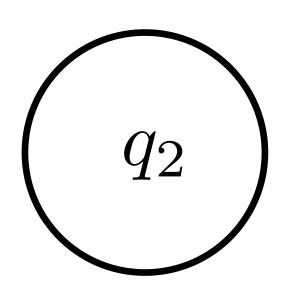
A restricted model of computation:

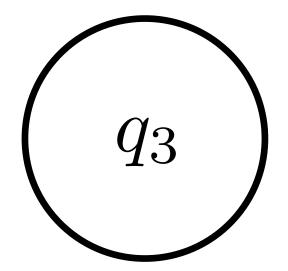
- limited memory
- reads input from left to right, and accepts or rejects.

$$\Sigma = \{0,1\}$$

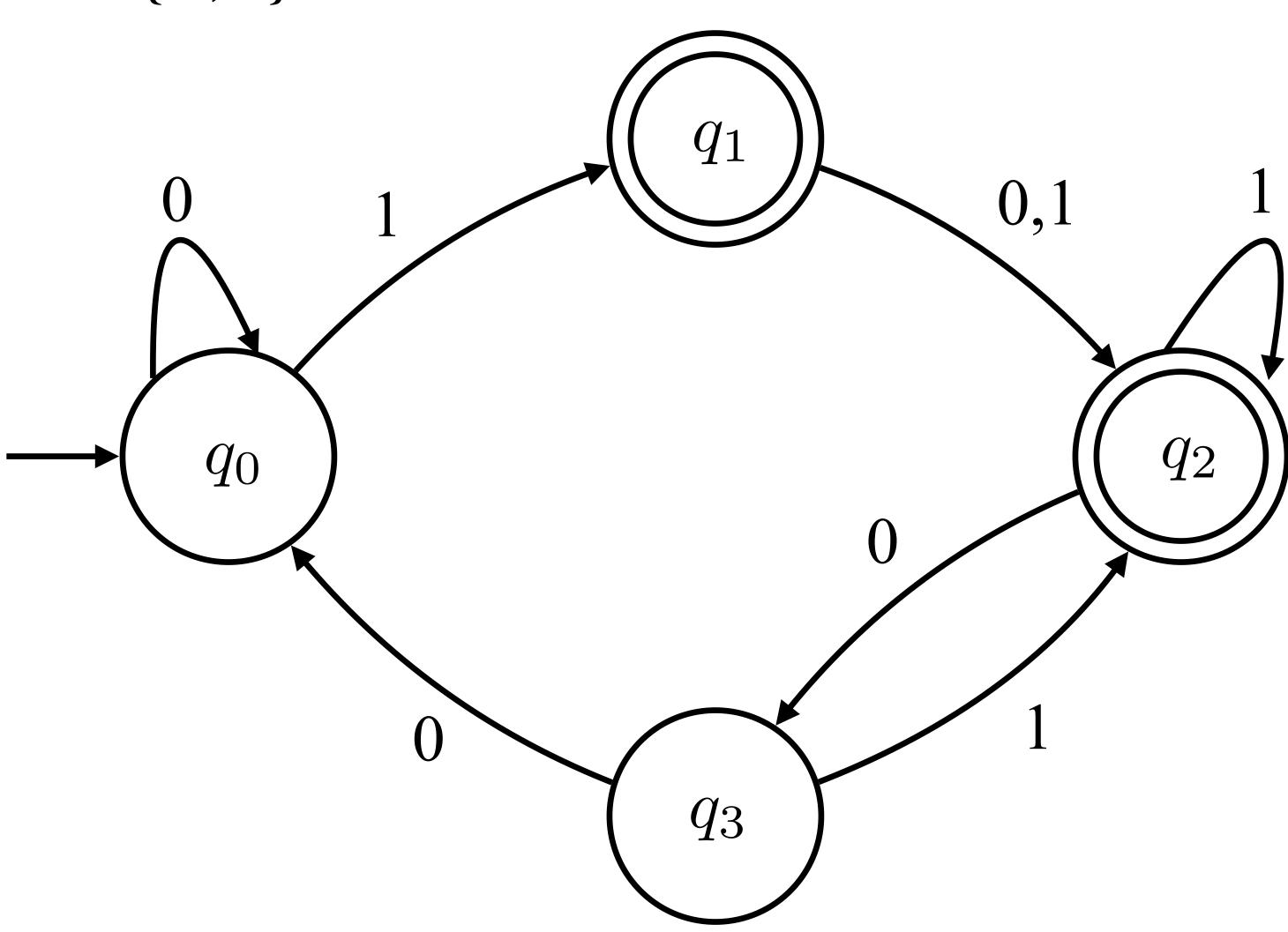


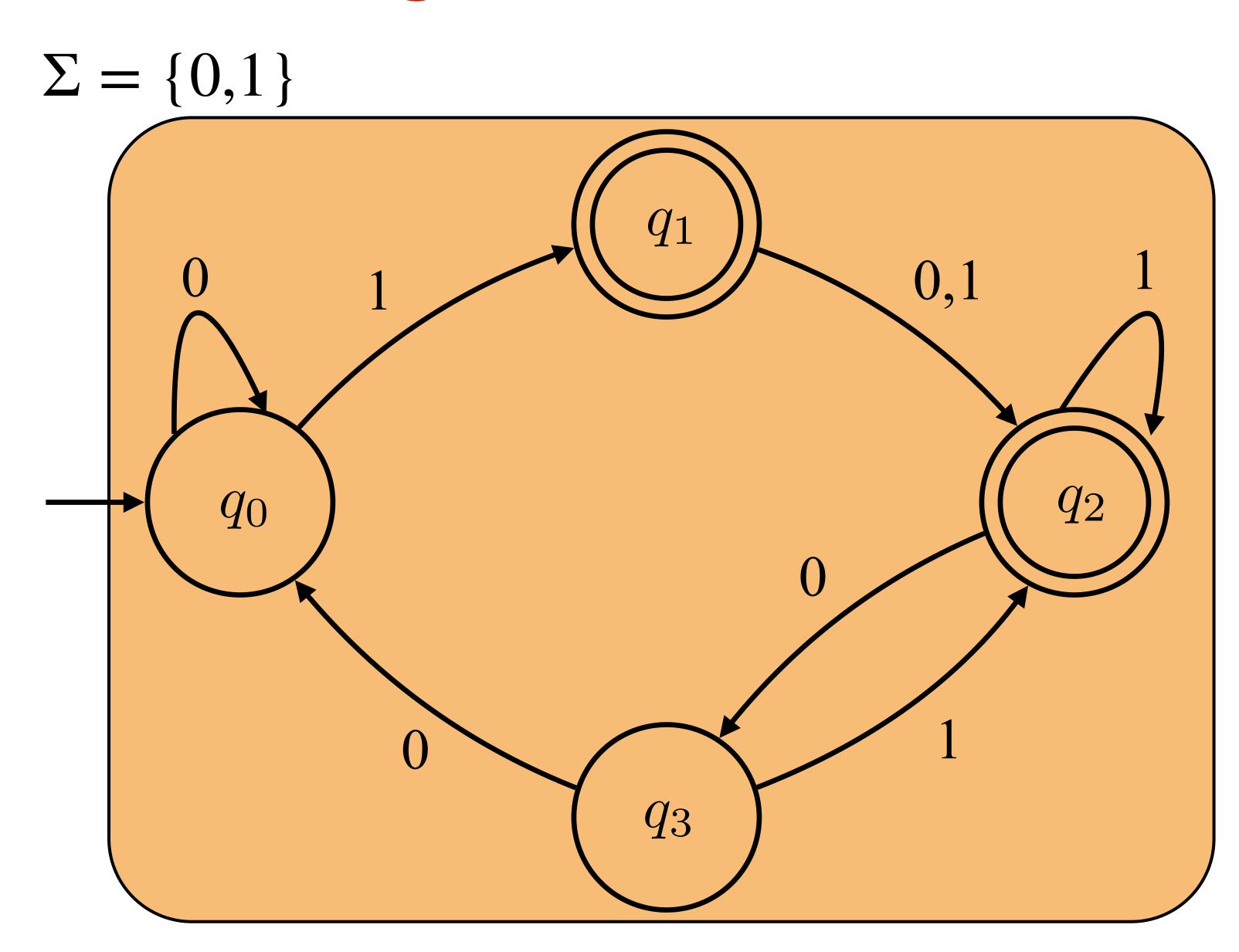


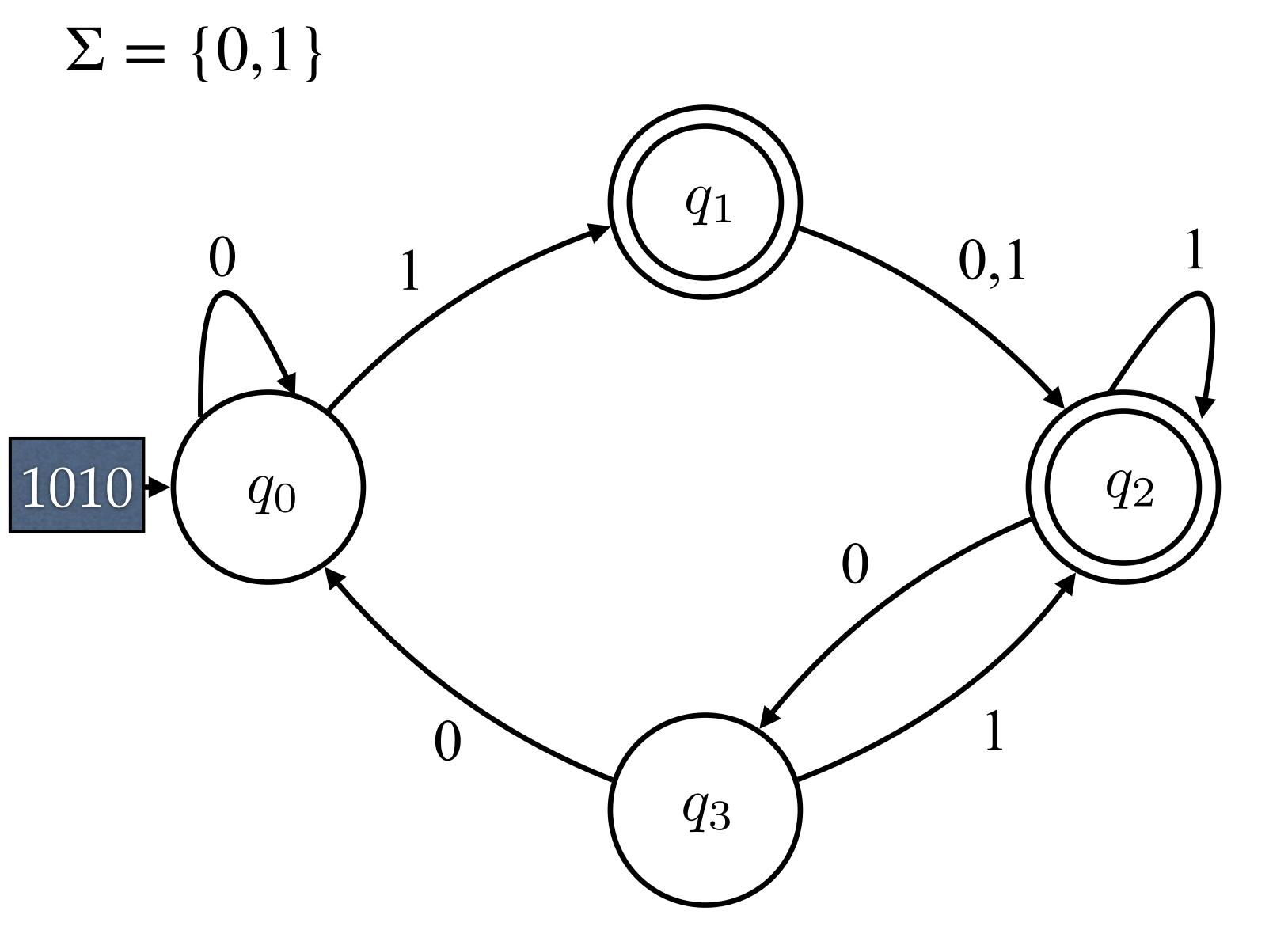


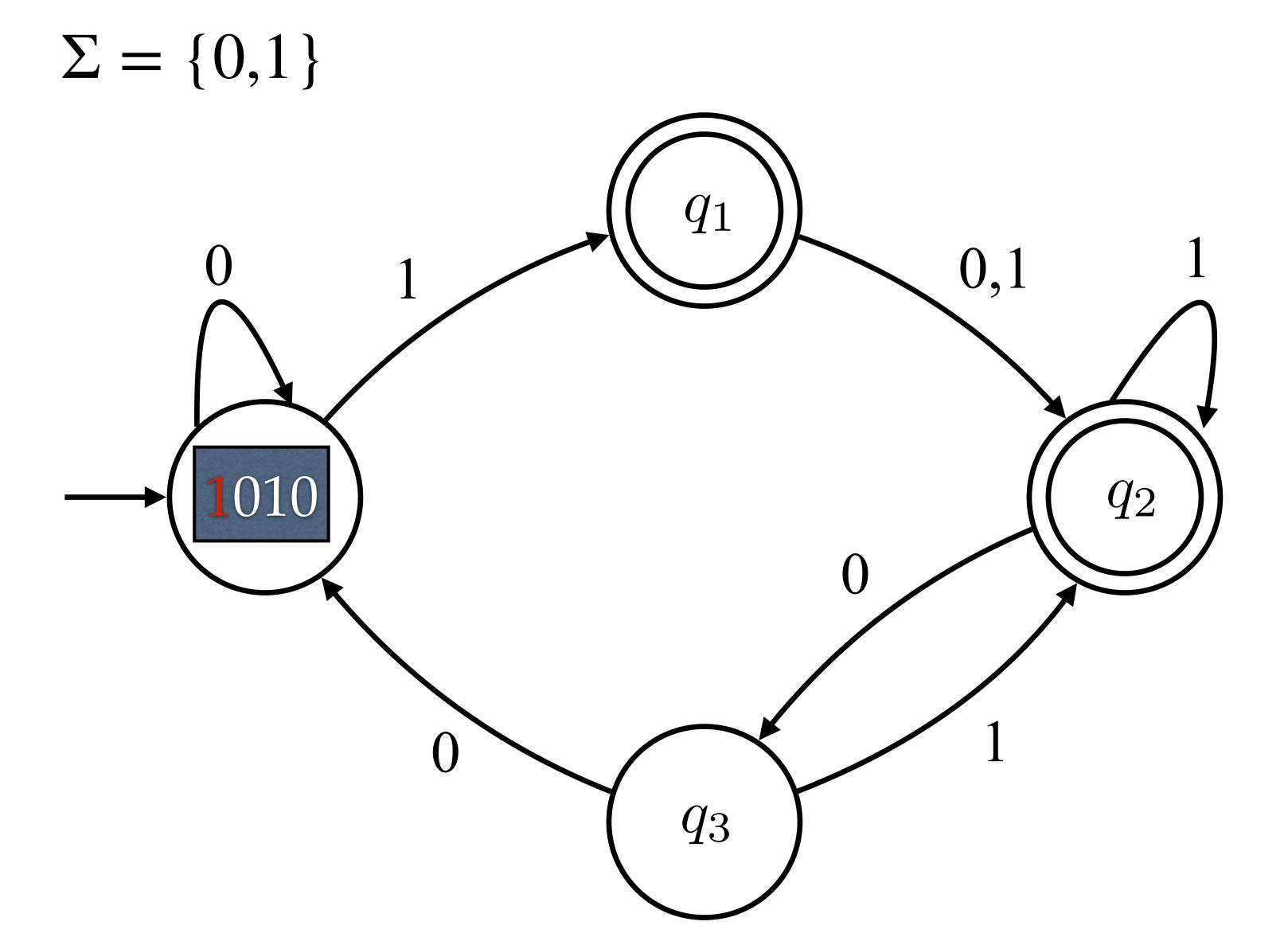


$$\Sigma = \{0,1\}$$

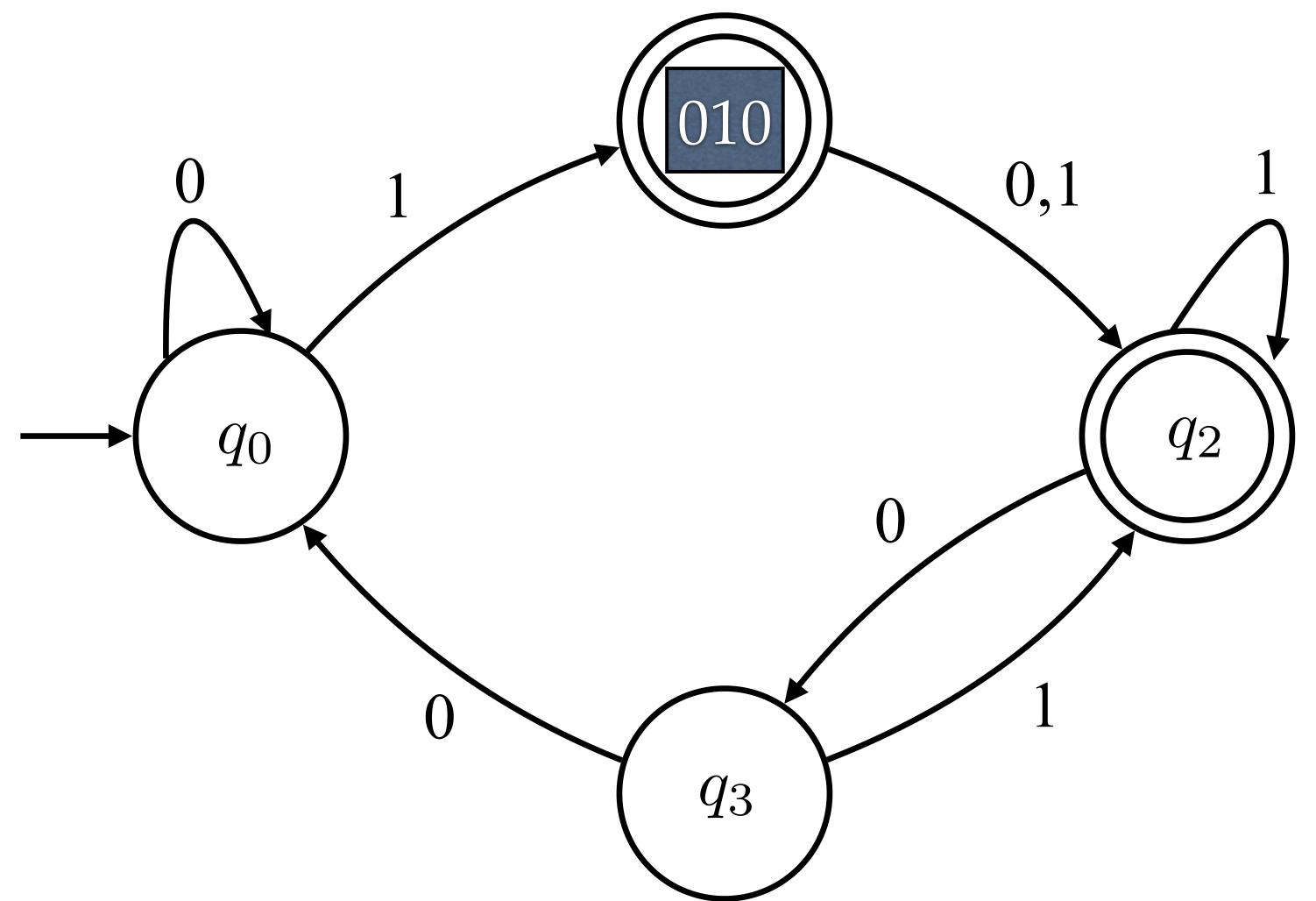




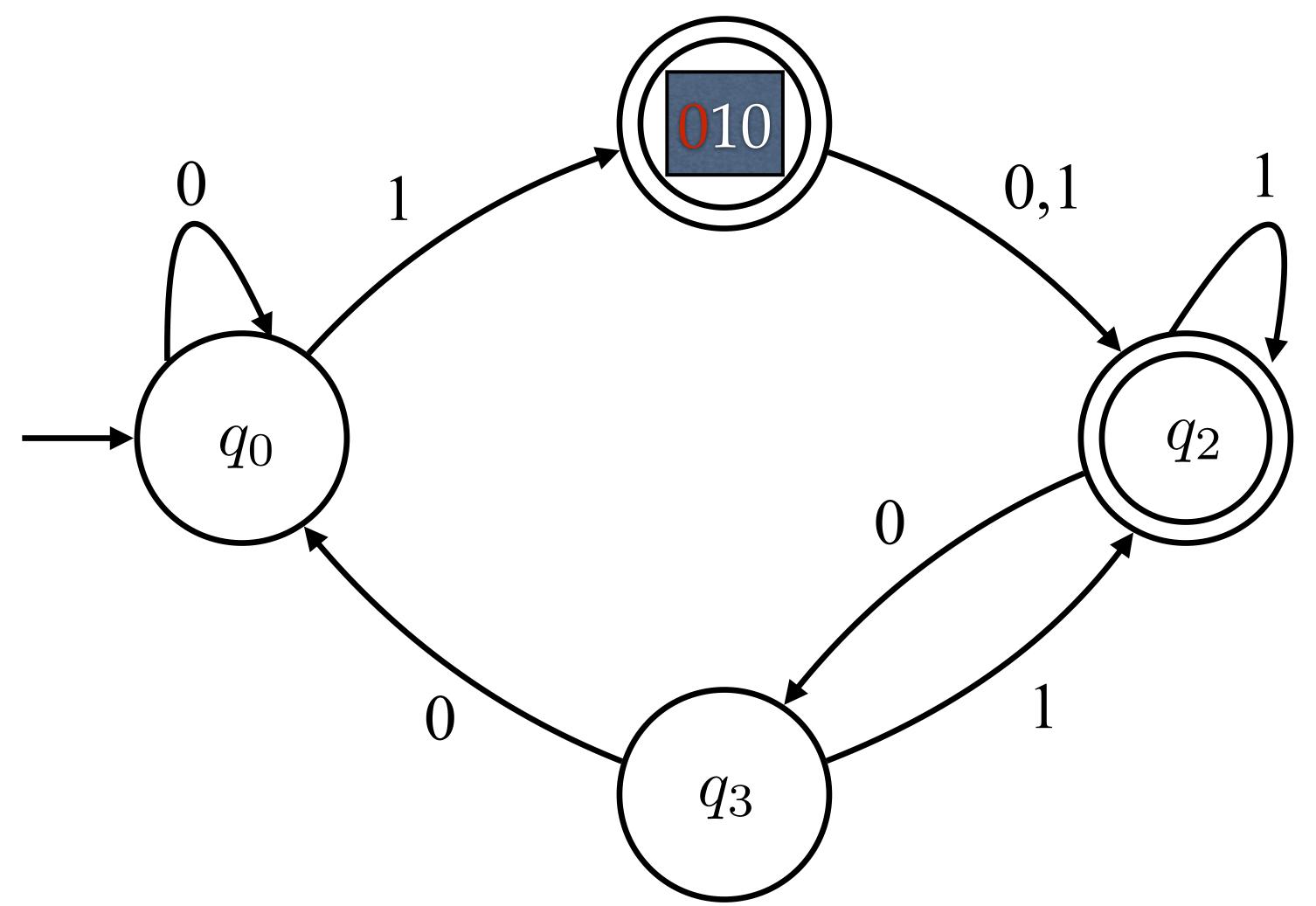




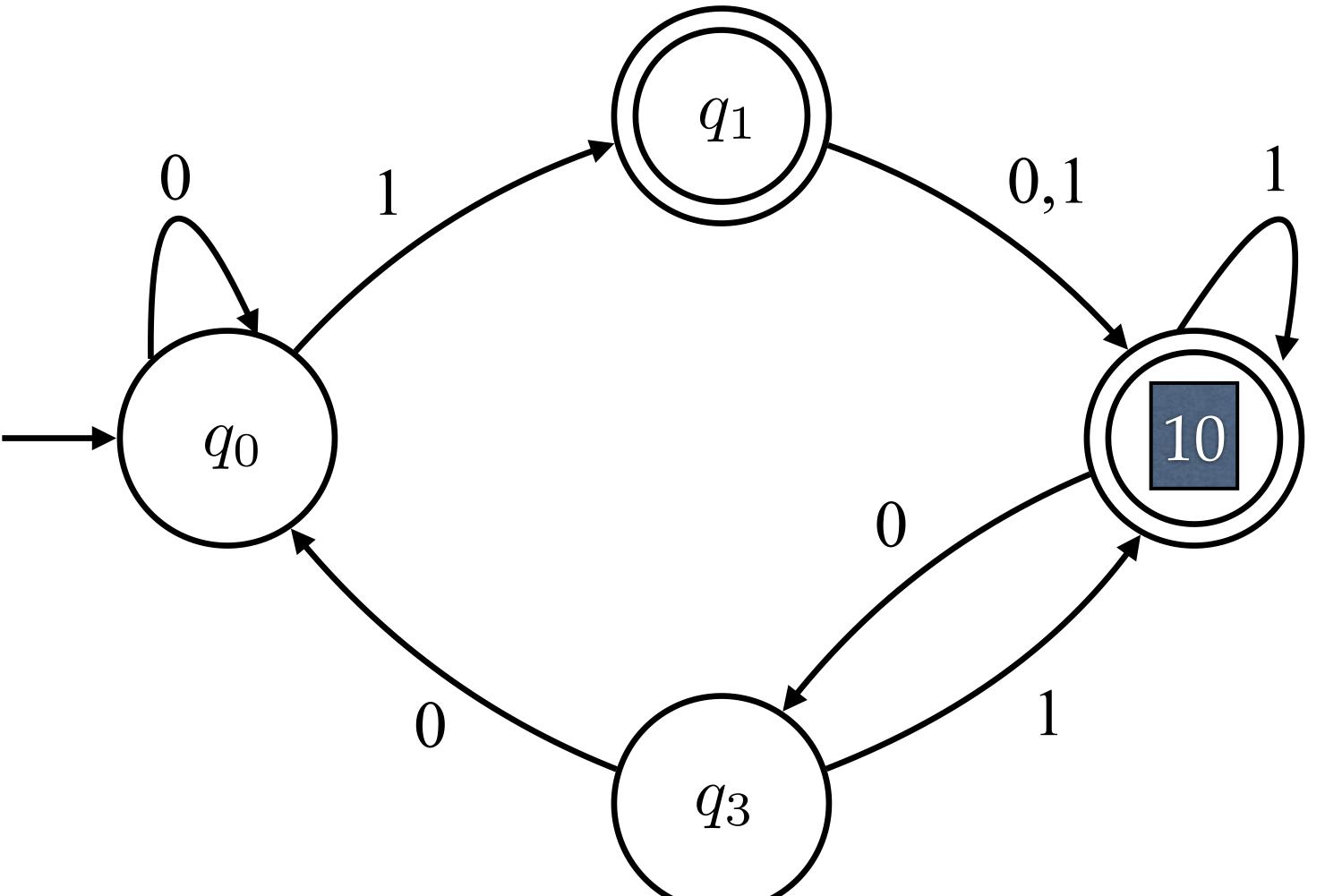
$$\Sigma = \{0,1\}$$



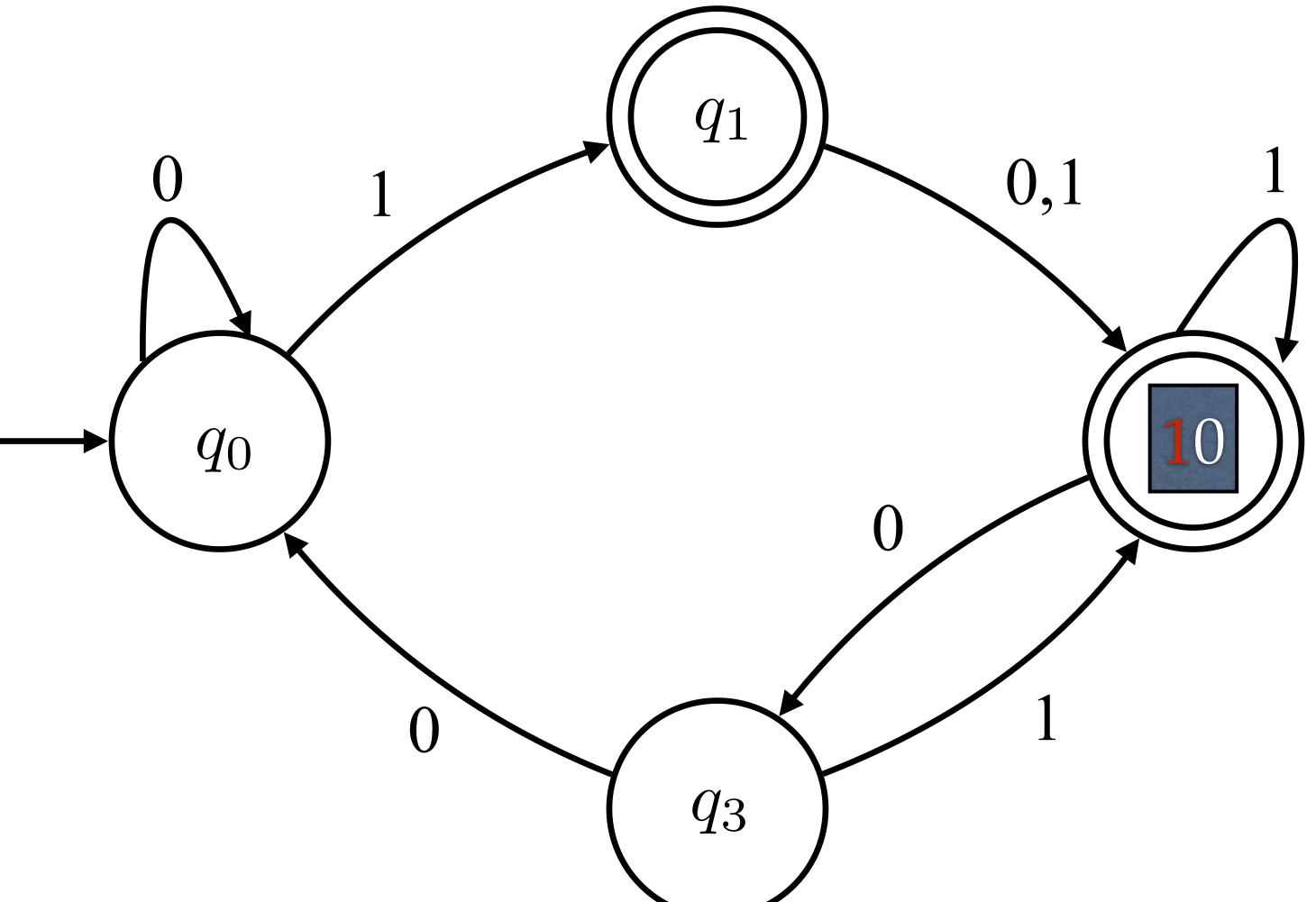
$$\Sigma = \{0,1\}$$



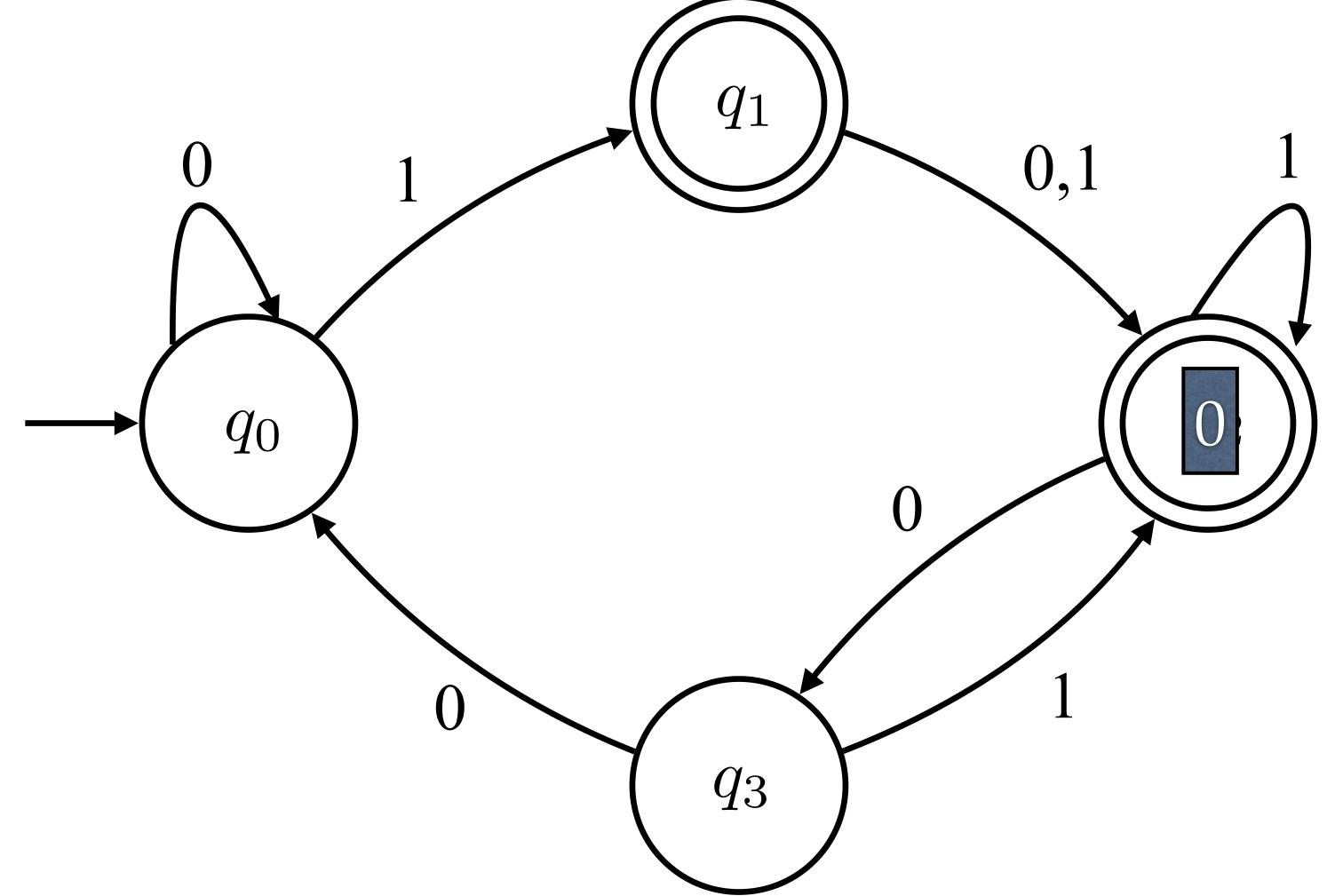
$$\Sigma = \{0,1\}$$



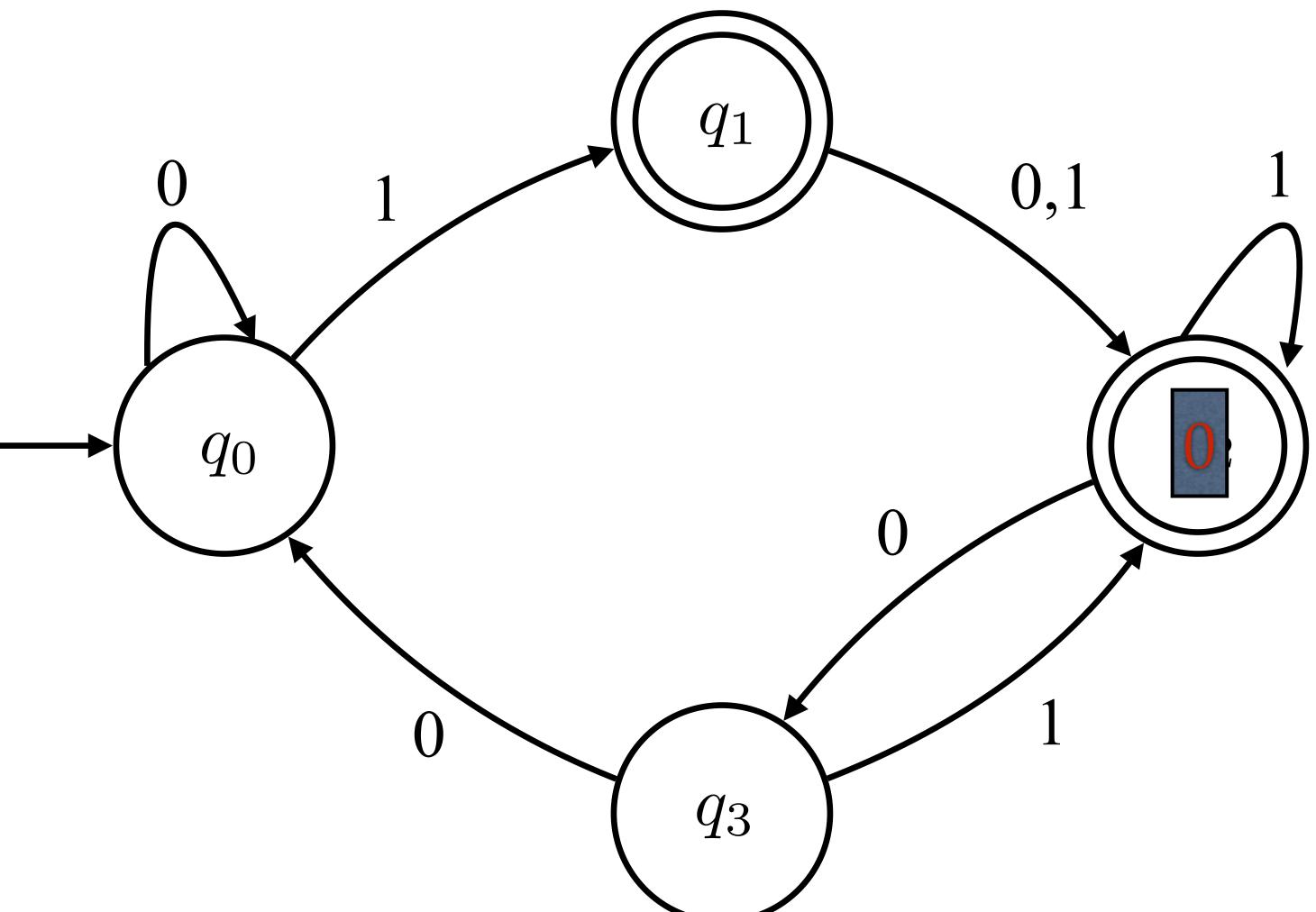
$$\Sigma = \{0,1\}$$
 Input

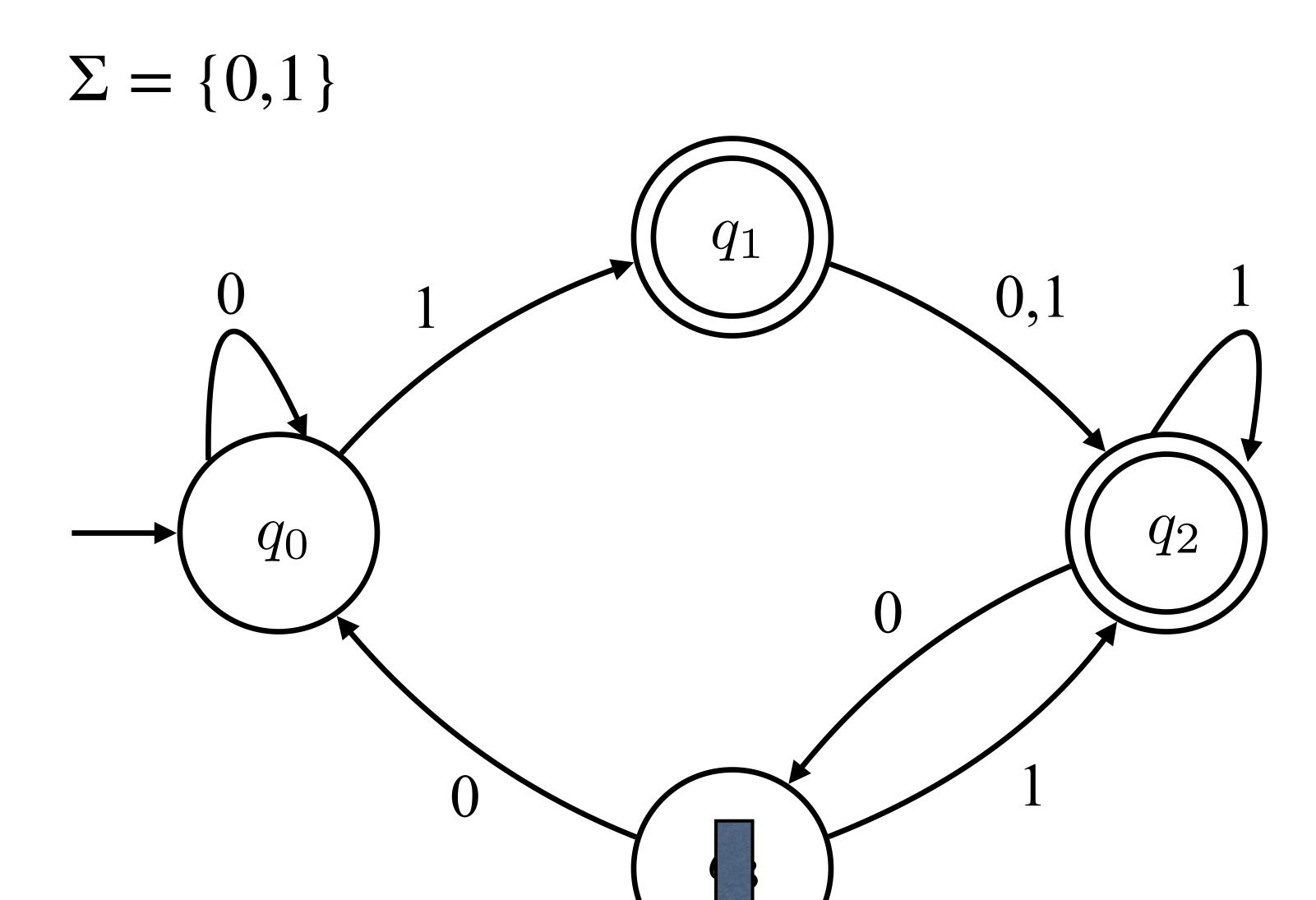


$$\Sigma = \{0,1\}$$



$$\Sigma = \{0,1\}$$





Input: 1010

Decision: REJECT

$$\Sigma = \{0,1\}$$

$$Q_1$$

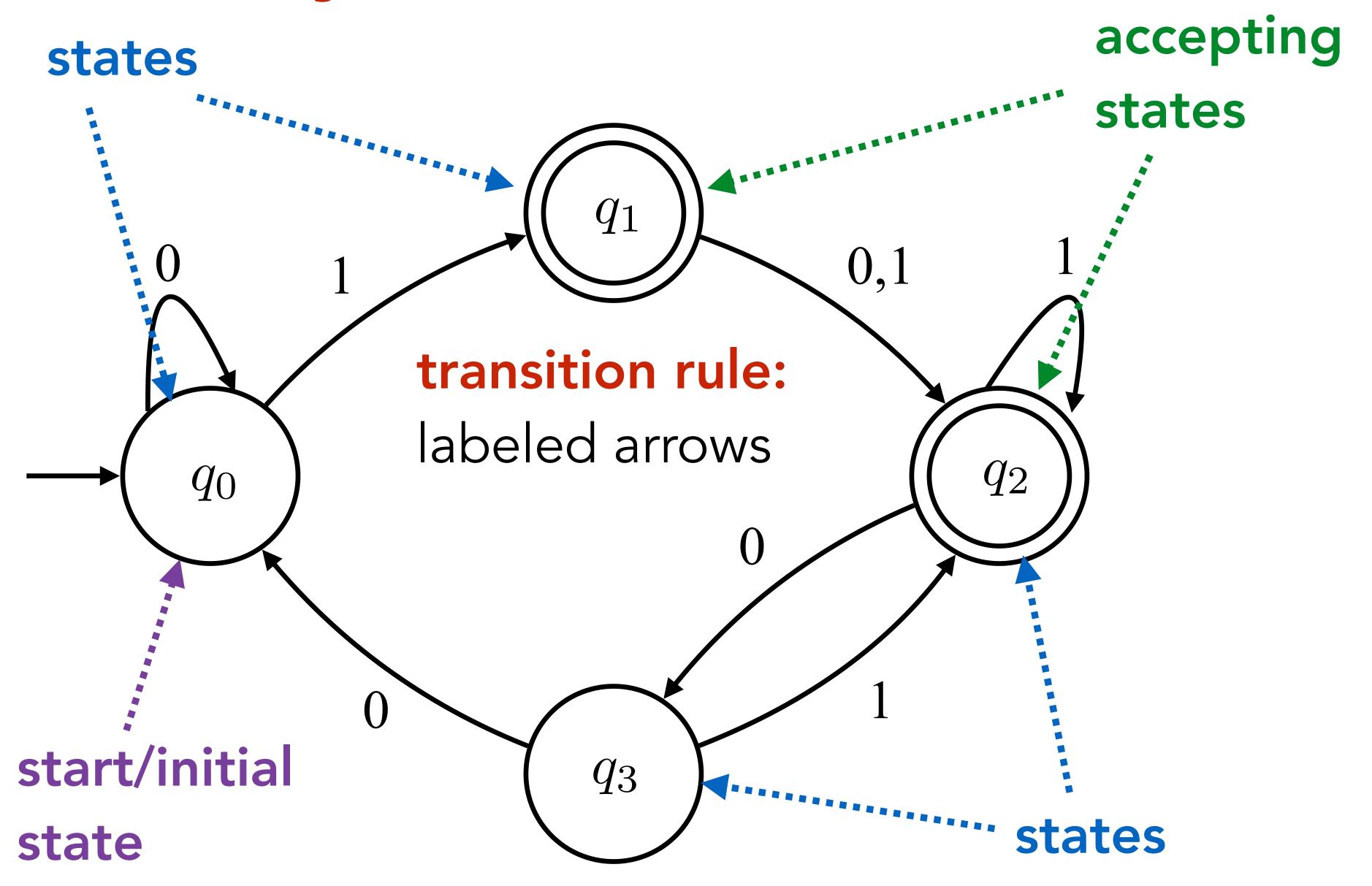
 q_0

0,1

Input: 10101

Decision: ACCEPT

Anatomy of a DFA



Definition: Language solved by a DFA

Definition: Let M be a DFA and $L \subseteq \Sigma^*$ a language.

We say that M solves L if the following holds:

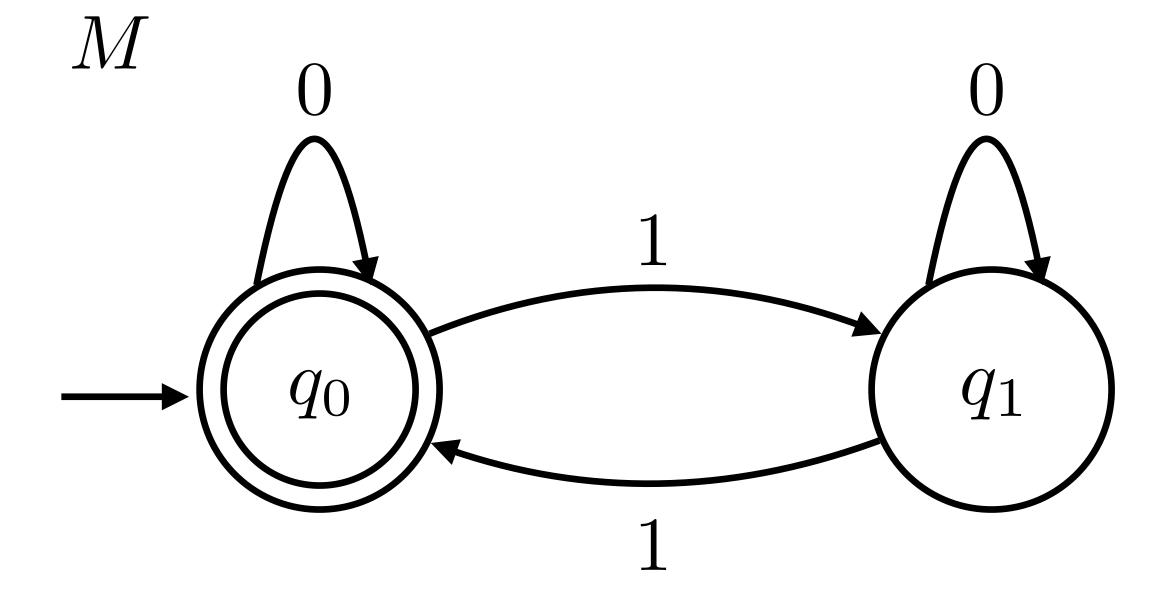
- if $w \in L$, M accepts w;
- if $w \notin L$, M rejects w.

decides computes

Useful Notation:

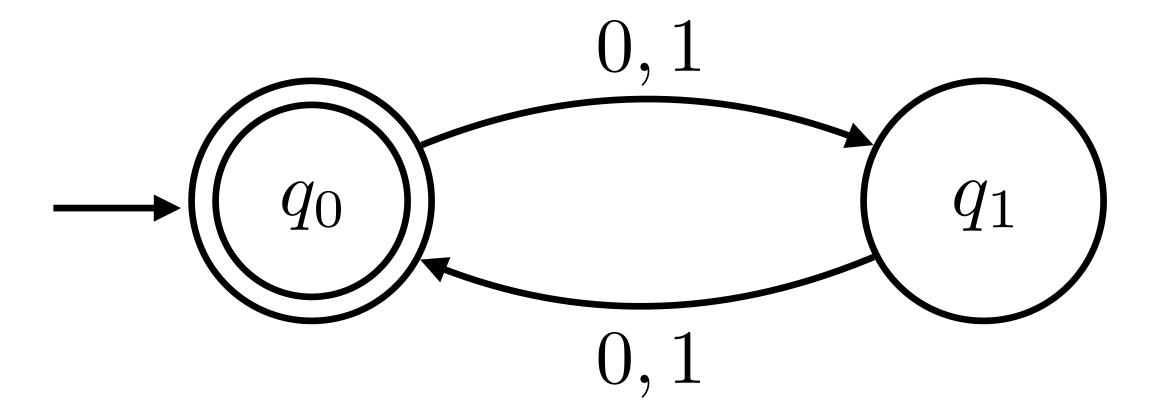
L(M) = set of strings that M accepts.

L(M) is **the** language that M solves/decides/computes.

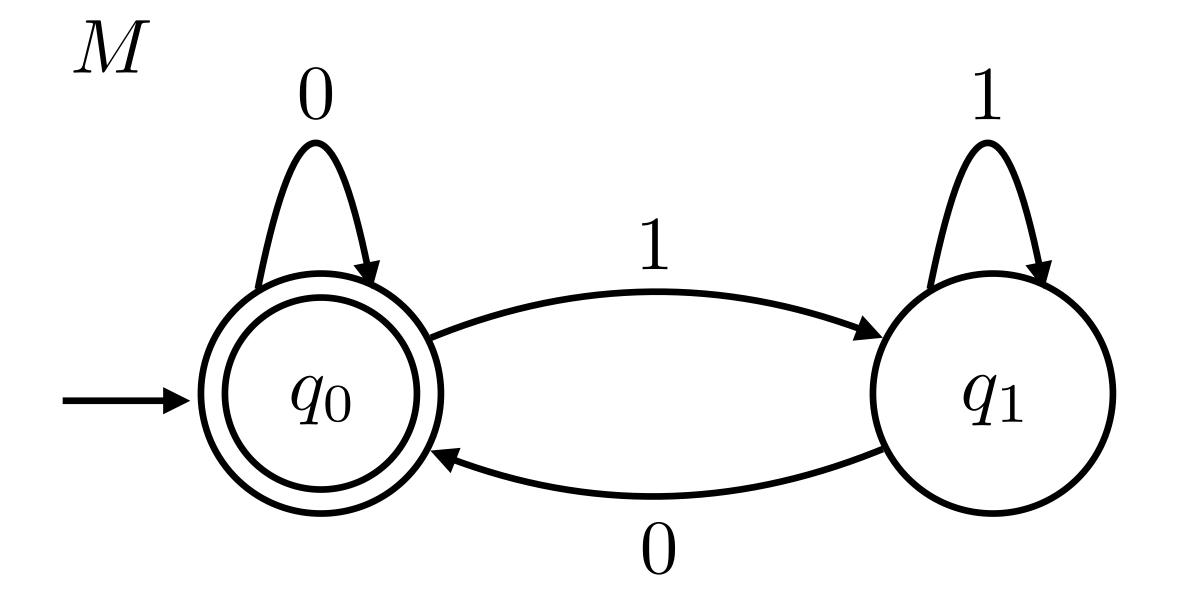


L(M) = all binary strings with even number of 1's $= \{x \in \{0,1\}^* : x \text{ has an even number of } 1's\}$

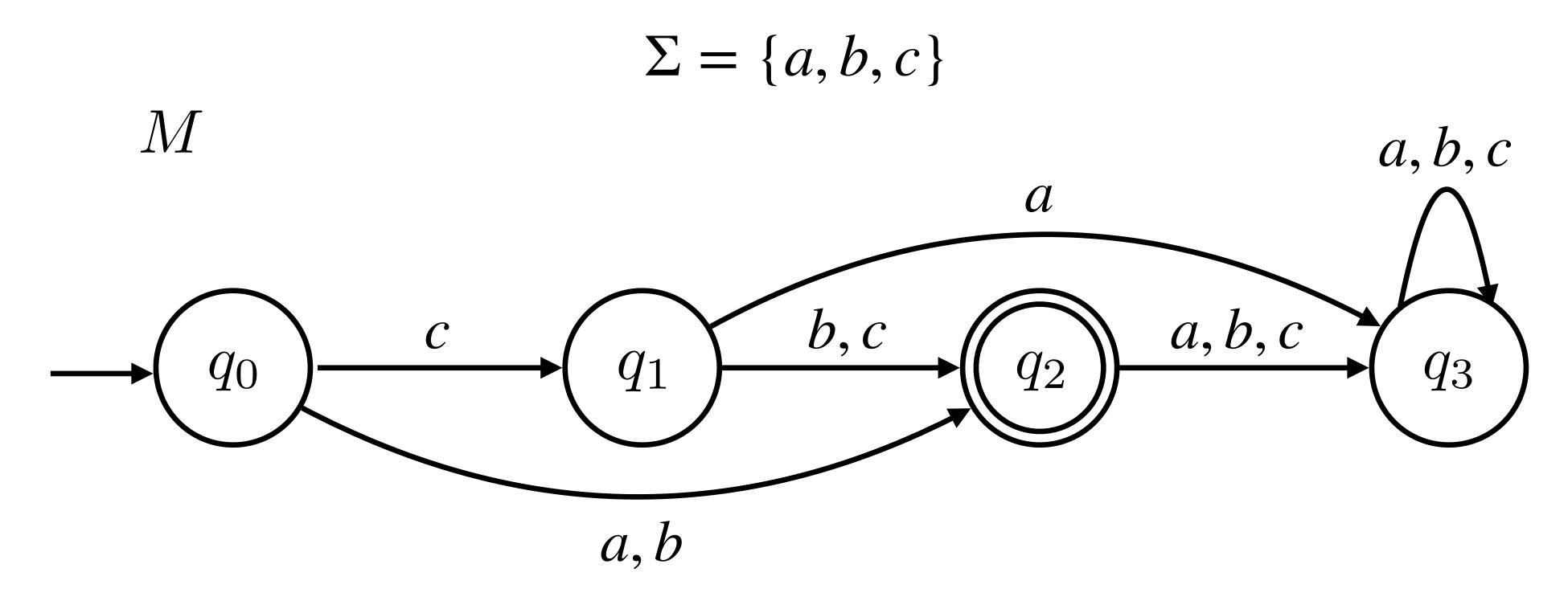
M



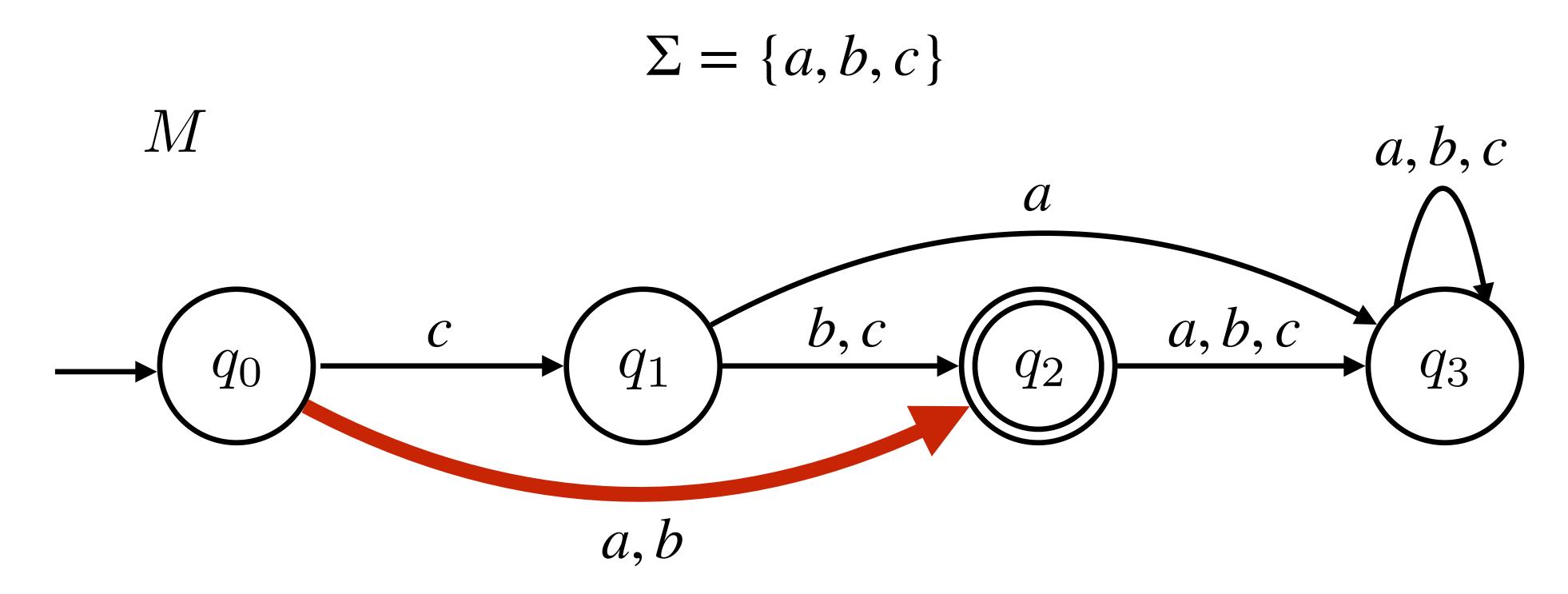
L(M) =all binary strings with even length $= \{x \in \{0,1\}^* : |x| \text{ is even} \}$



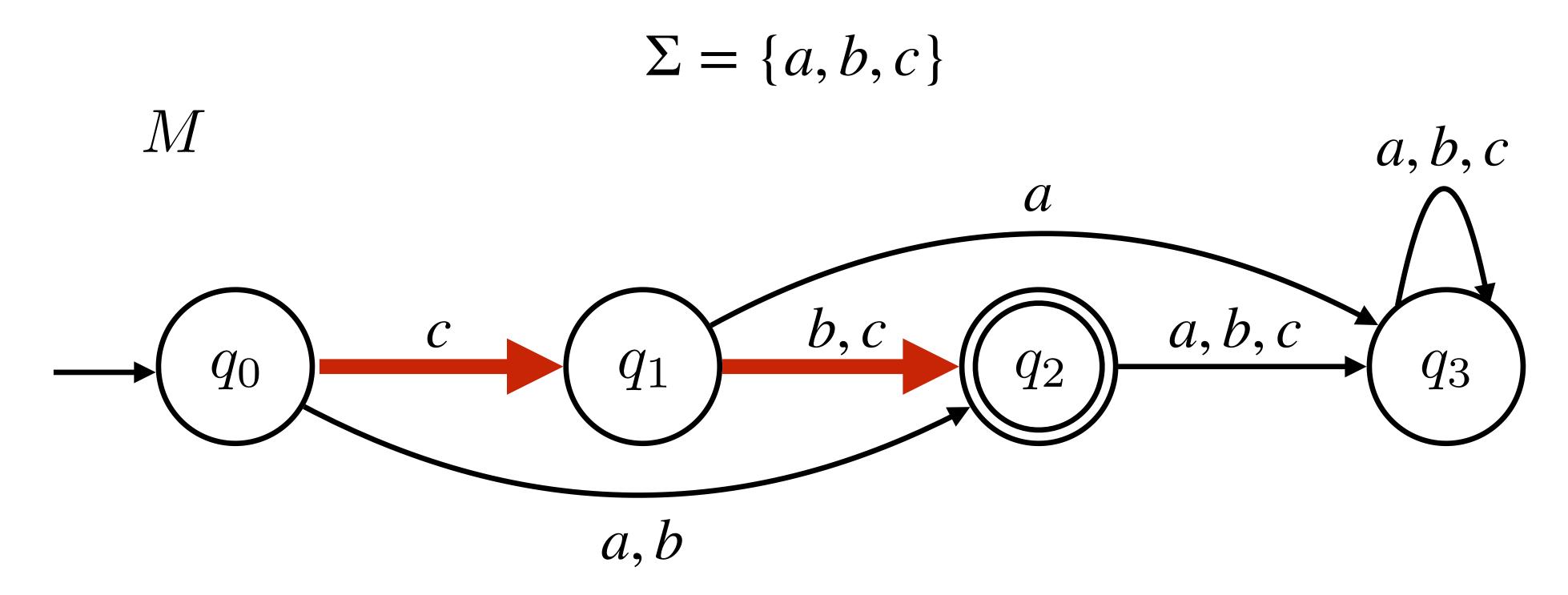
 $L(M) = \{x \in \{0,1\}^* : x \text{ ends with a 0}\} \cup \{\epsilon\}$



$$L(M) = \{$$

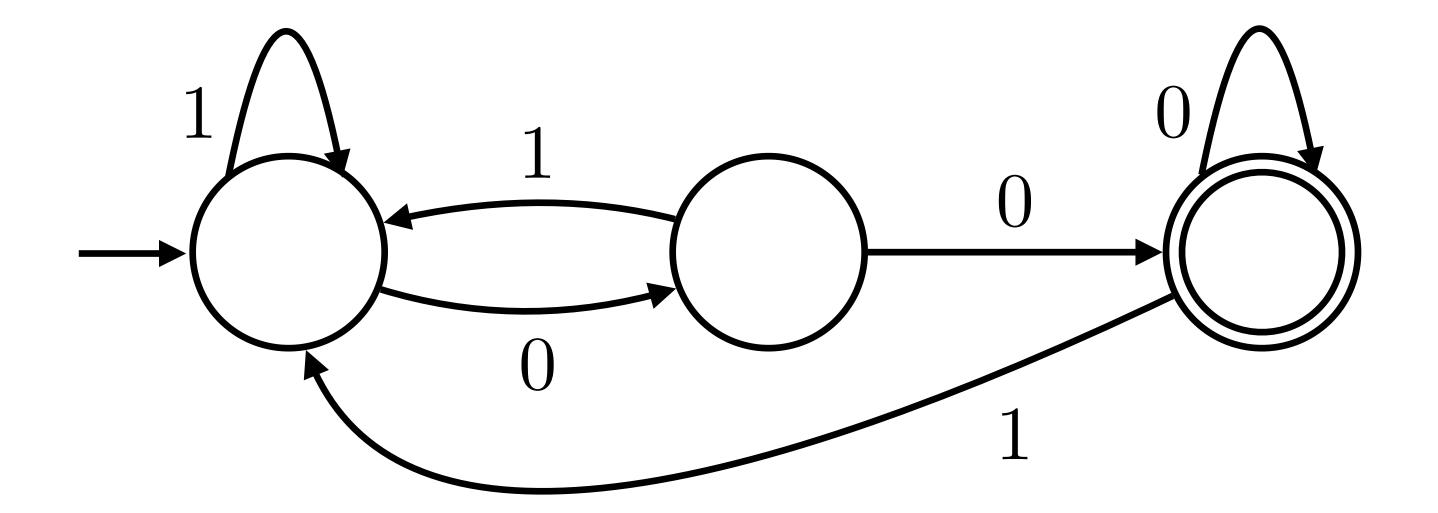


$$L(M) = \{a, b\}$$

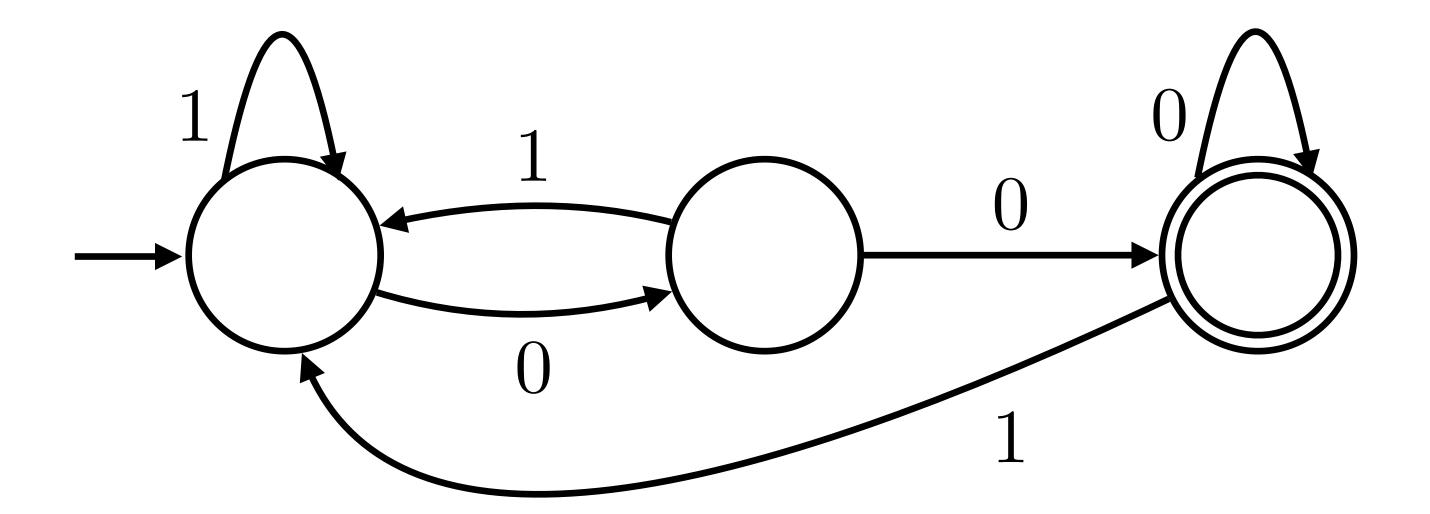


$$L(M) = \{a, b, cb, cc\}$$

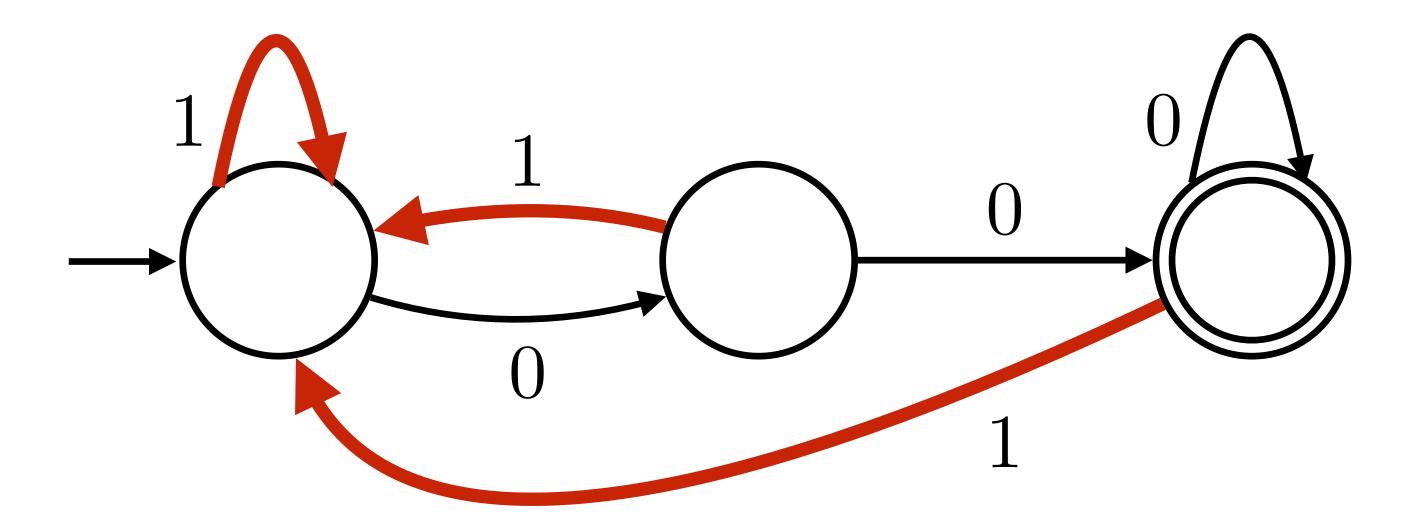
poll.cs251.com



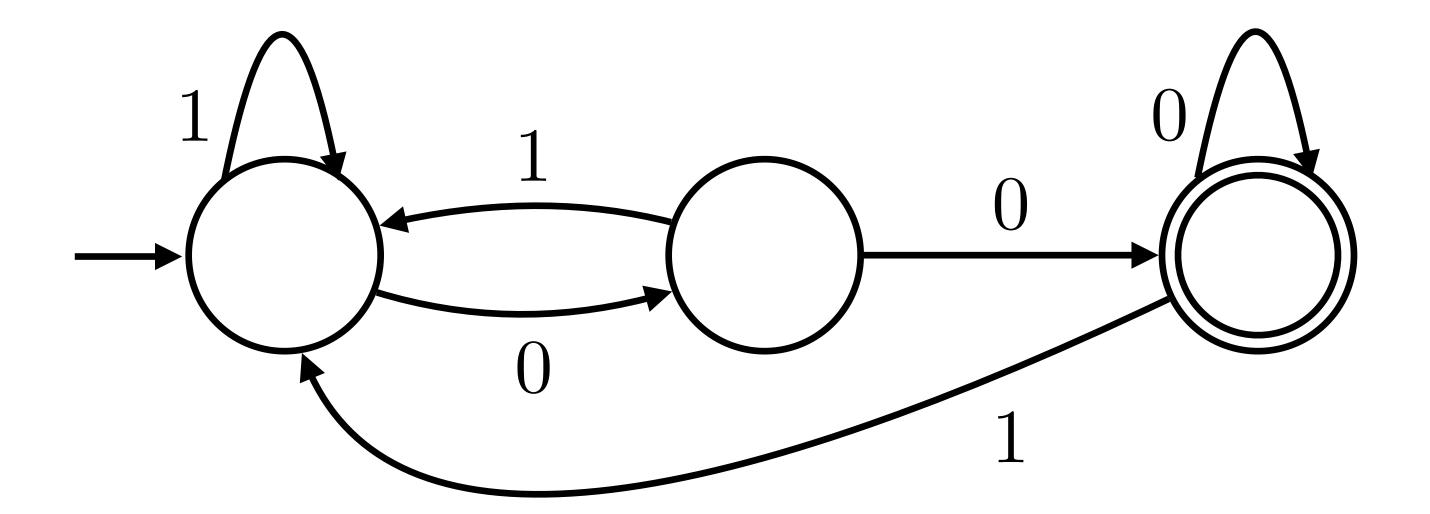
$$L(M) =$$



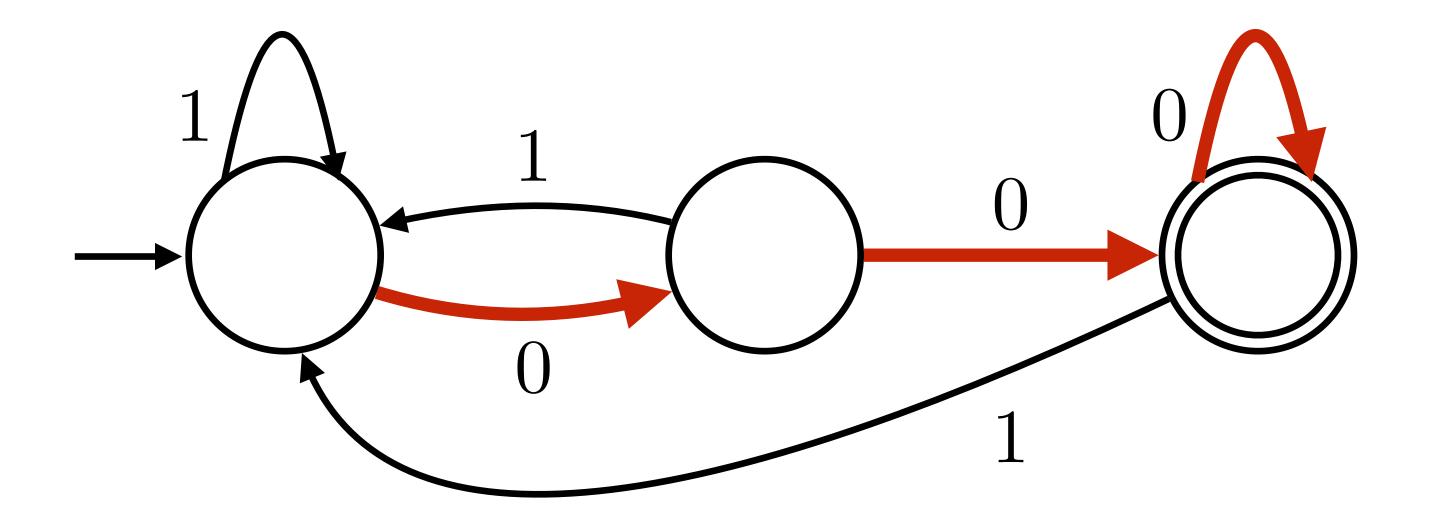
$$L(M) =$$



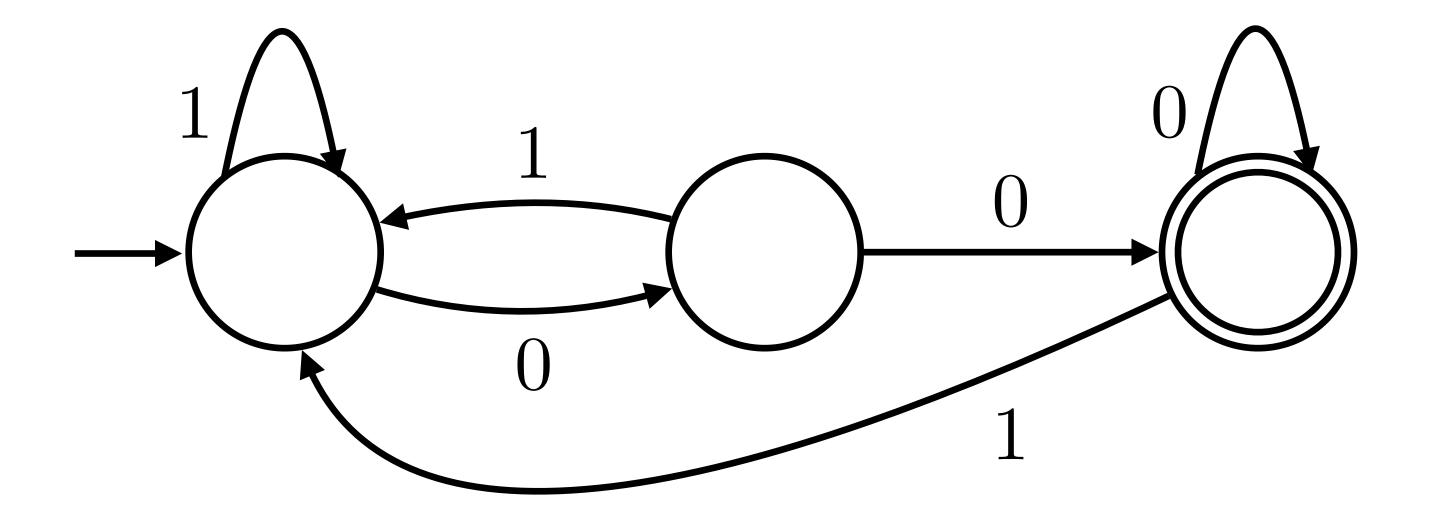
$$L(M) =$$



$$L(M) =$$



$$L(M) =$$



L(M) = set of all strings ending in 00

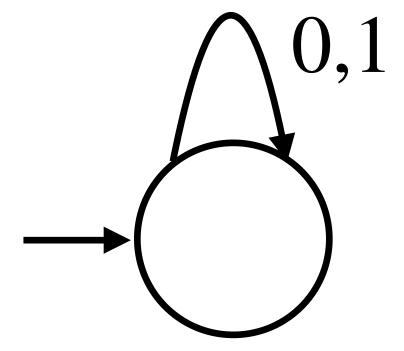
If w ends with 00, M accepts.

If w does not end with 00, M rejects.

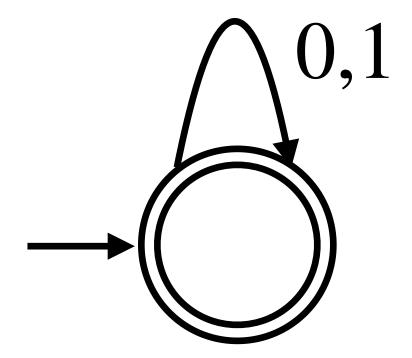
DFA construction practice

```
L = \emptyset
L = \Sigma^*
L = \{110, 101\}
L = \{0,1\} * \setminus \{110,101\}
L = \{x \in \{0,1\}^* : x \text{ starts and ends with same bit}\}
L = \{x \in \{0,1\}^* : |x| \text{ is divisible by 2 or 3} \}
L = \{\epsilon, 110, 110110, 110110110, \dots\}
L = \{x \in \{0,1\}^* : x \text{ contains the substring } 110\}
L = \{x \in \{0,1\}^* : 10 \text{ and } 01 \text{ occur equally often in } x\}
```

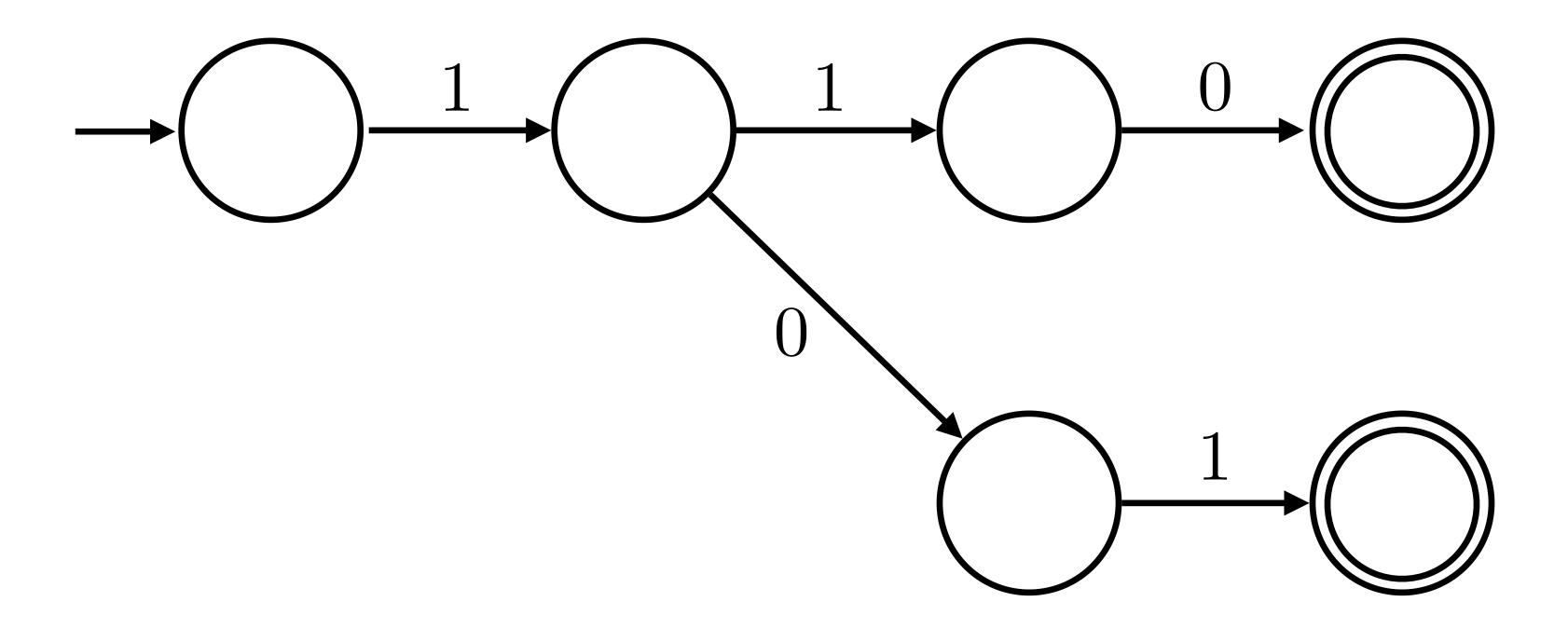
$$L = \emptyset$$



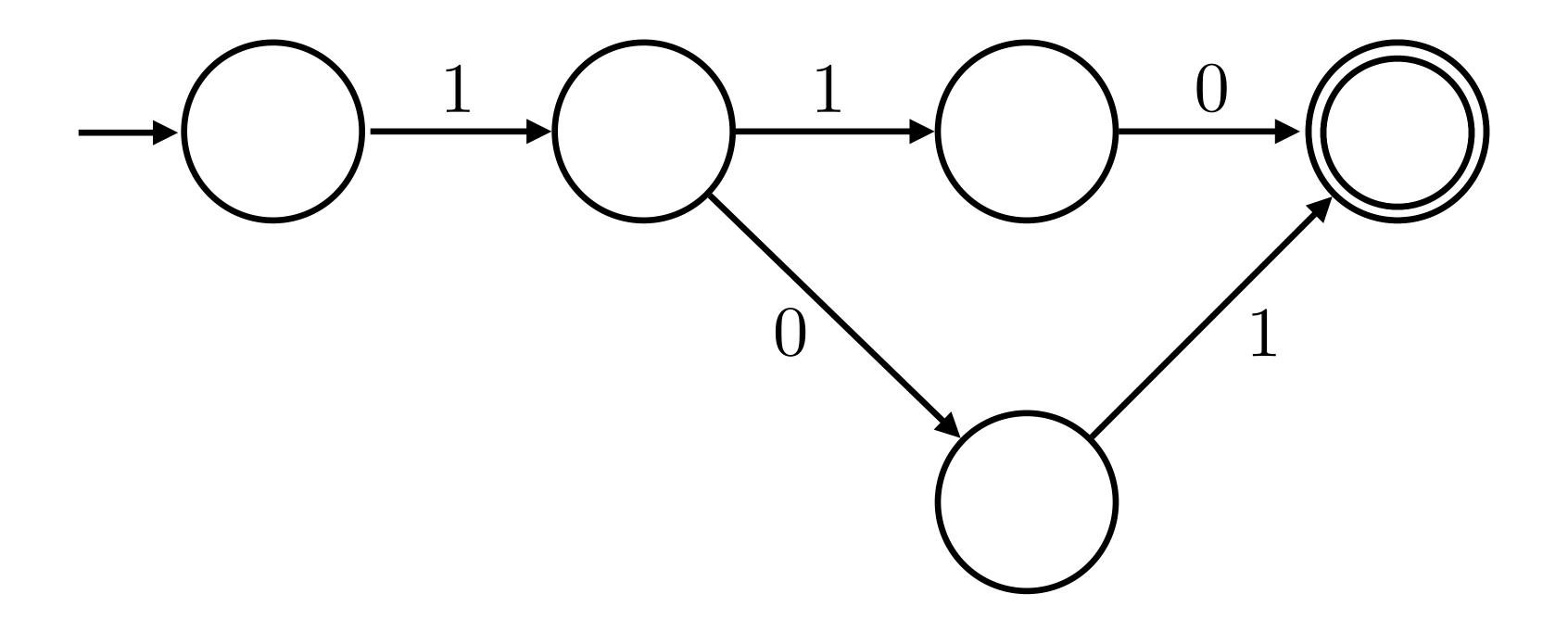
$$L = \Sigma^*$$



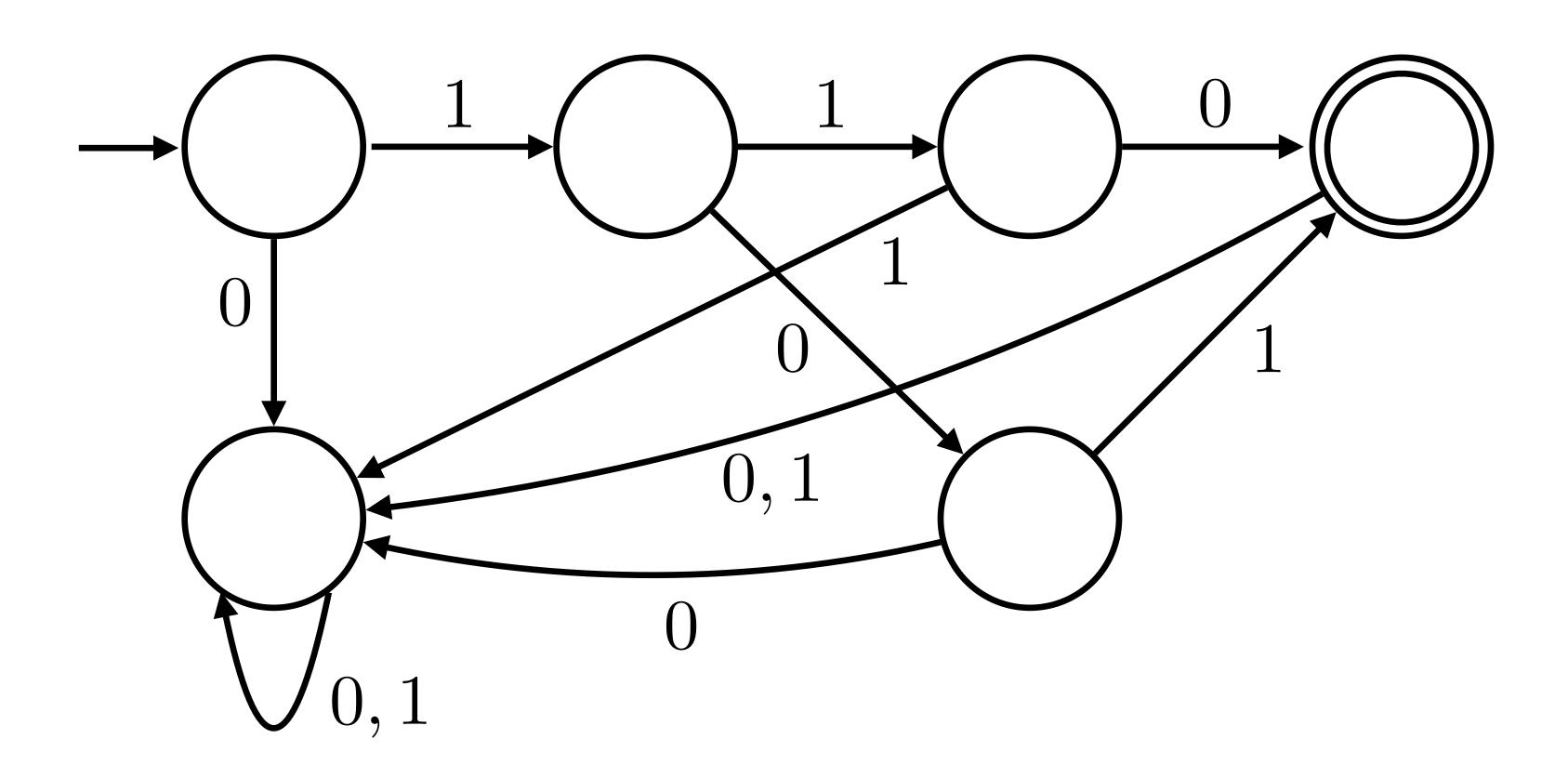
$$L = \{110,101\}$$



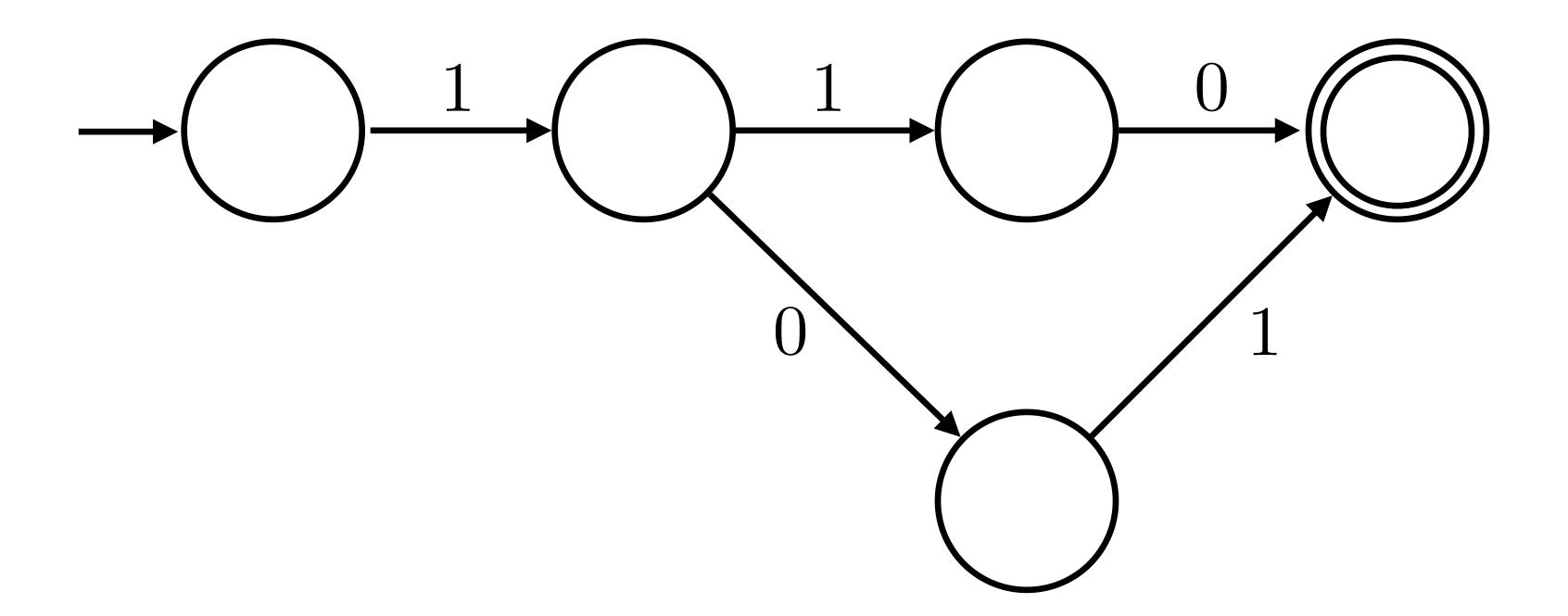
$$L = \{110,101\}$$



$$L = \{110,101\}$$

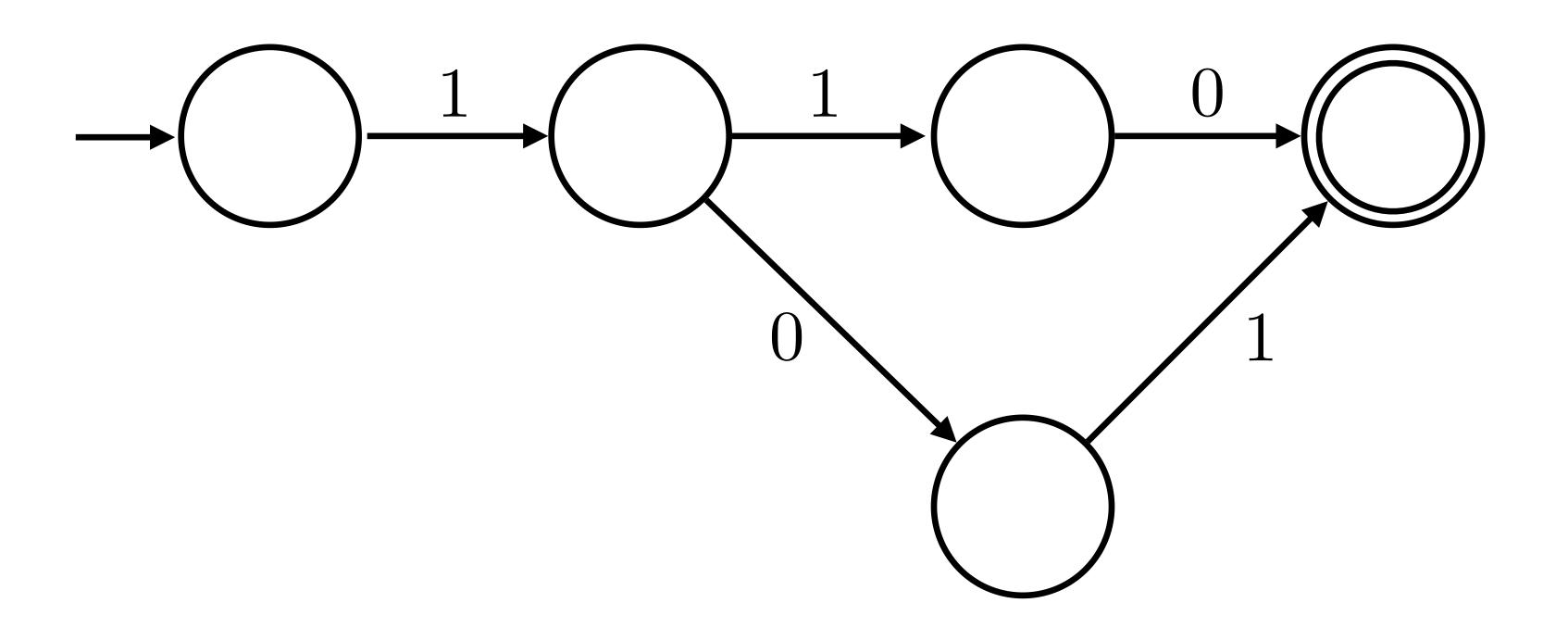


$$L = \{110,101\}$$

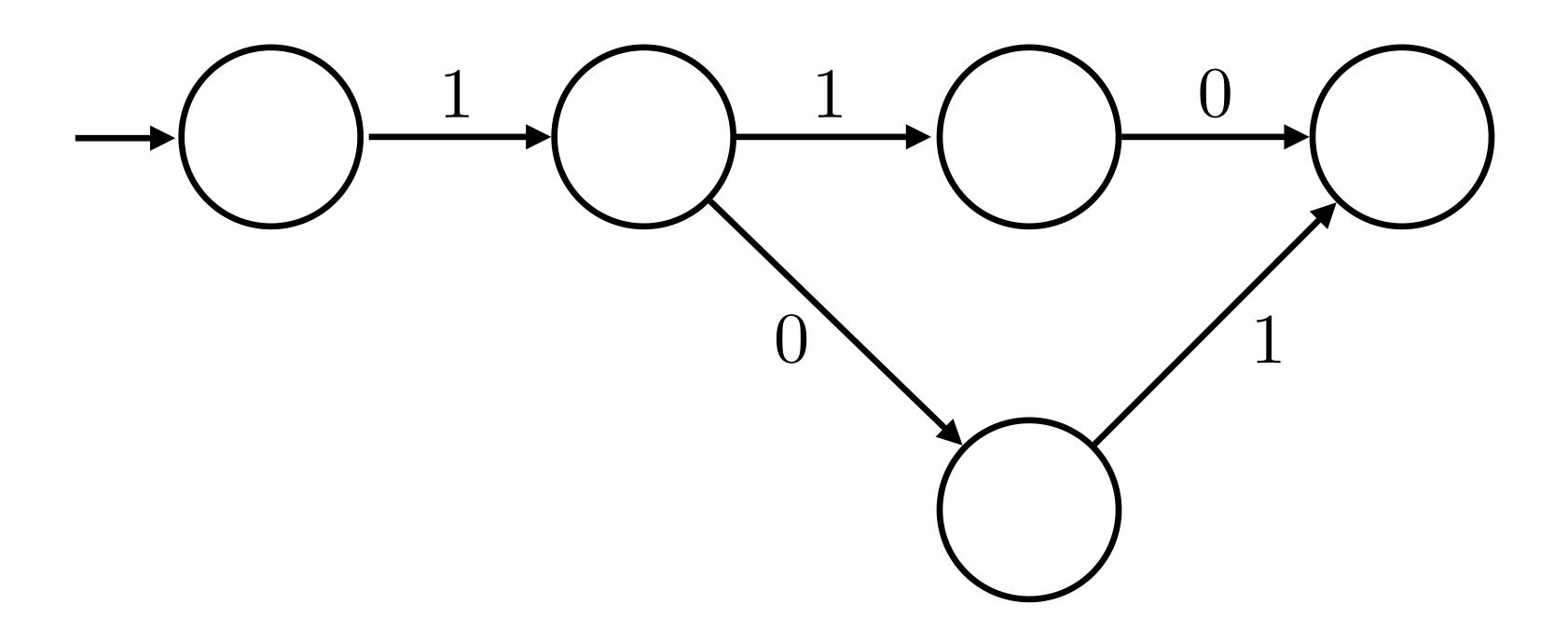


All missing transitions go to a rejecting sink state.

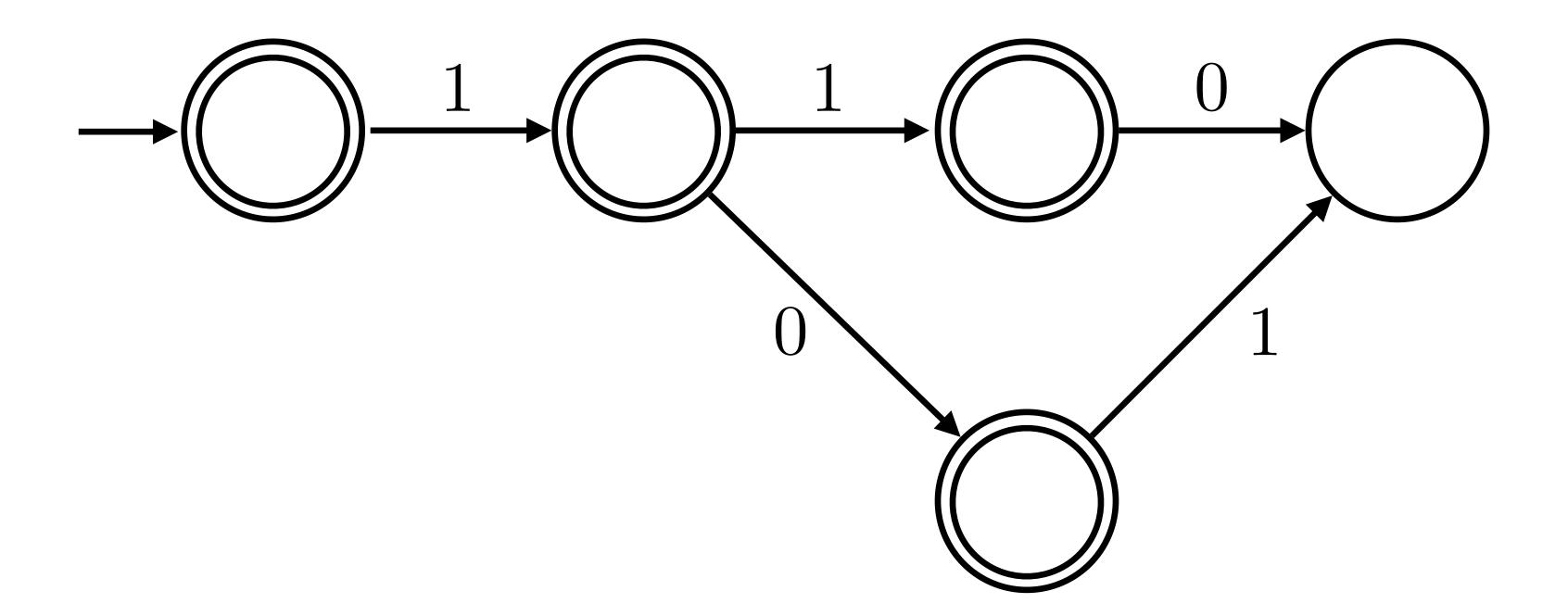
$$L = \{0,1\} * \setminus \{110,101\}$$



$$L = \{0,1\} * \setminus \{110,101\}$$

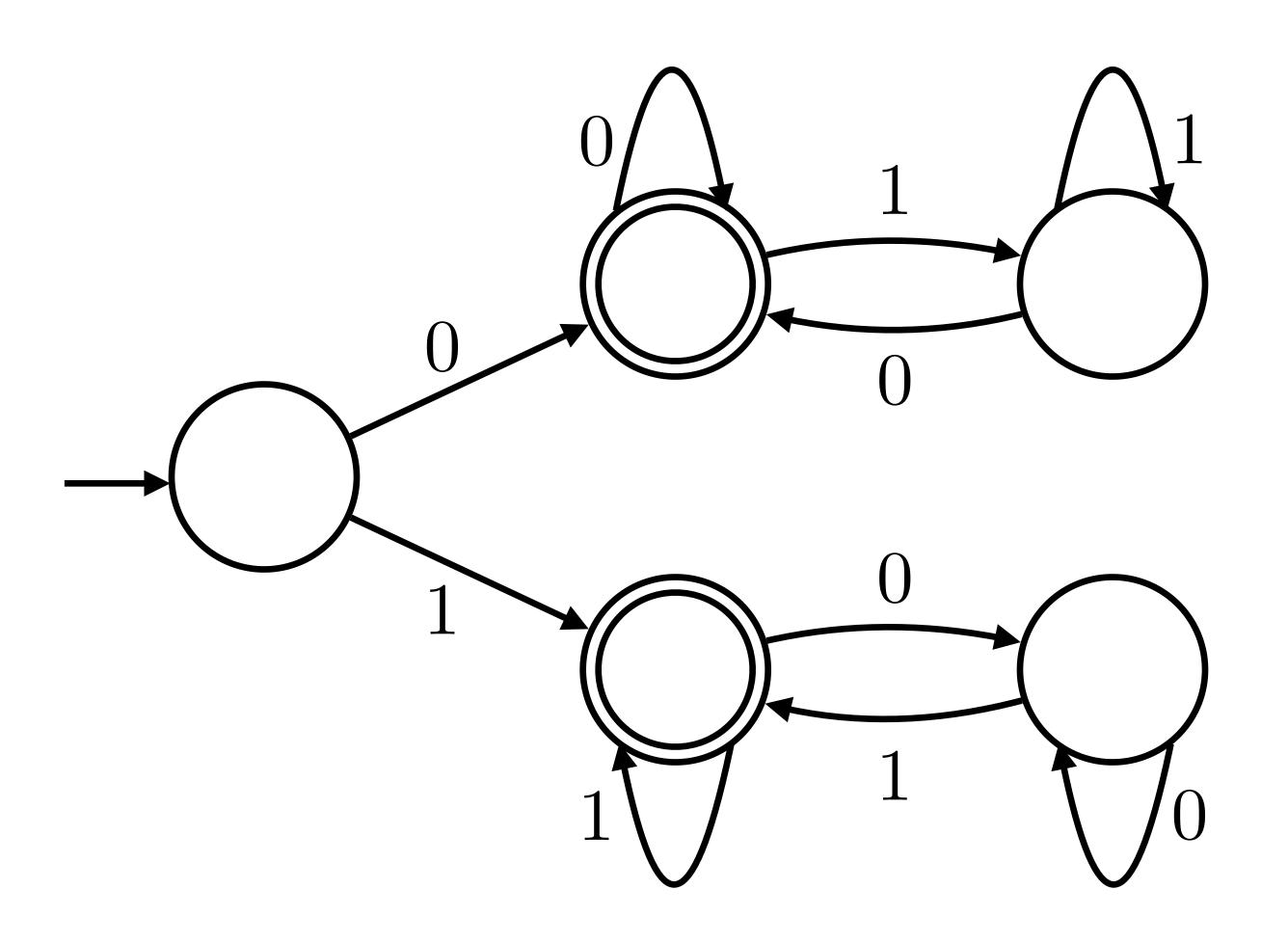


$$L = \{0,1\} * \setminus \{110,101\}$$



All missing transitions go to an accepting sink state.

 $L = \{x \in \{0,1\}^* : x \text{ starts and ends with same bit}\}$



Terminology:

Computational Model

Allowed rules for information processing.

The Deterministic Finite Automaton computational model

Machine = Computer

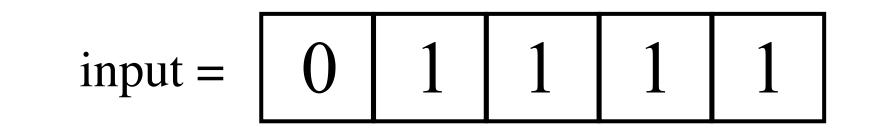
An instantiation of the computational model.

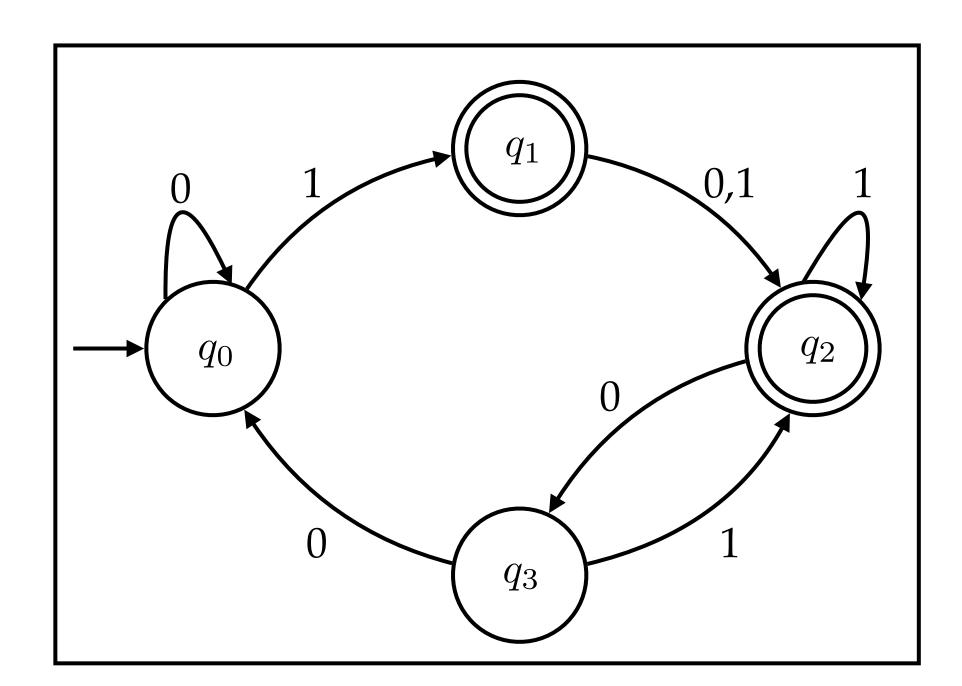
= Program = Algorithm

(a specific sequence of information processing rules)

A Deterministic Finite Automaton (DFA)

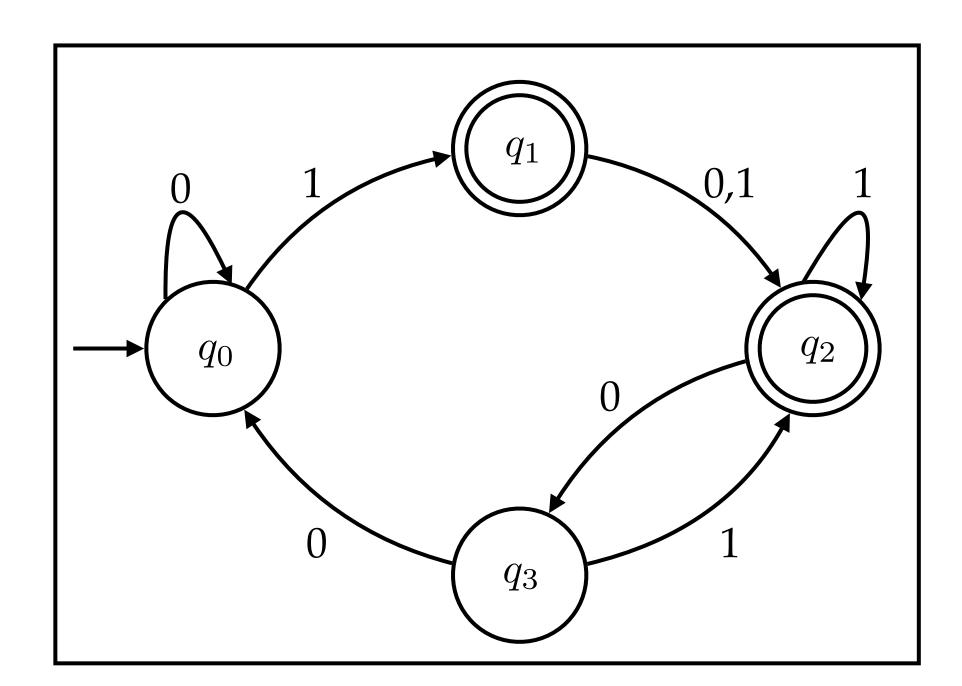
```
def foo(input):
  i = 0;
  STATE 0:
     if (i == input.length): return False;
     letter = input[i];
     i++;
     switch(letter):
       case '0': go to STATE 0;
       case '1': go to STATE 1;
  STATE 1:
     if (i == input.length): return True;
     letter = input[i];
     i++;
     switch(letter):
       case '0': go to STATE 2;
       case '1': go to STATE 2;
    \bullet \bullet
```





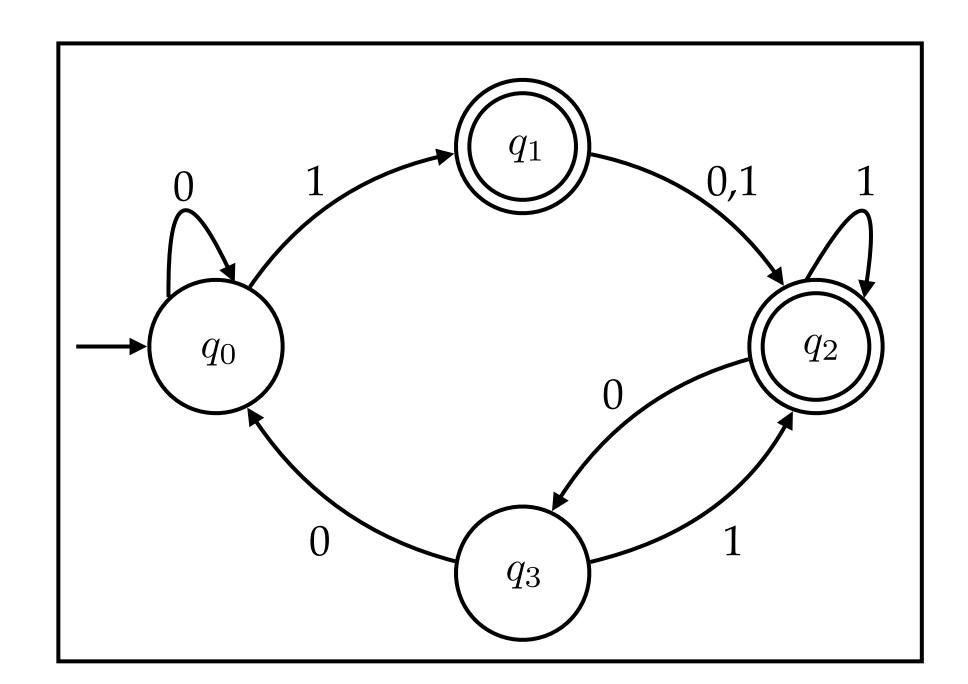
```
def foo(input):
  i = 0;
  STATE 0:
     if (i == input.length): return False;
     letter = input[i];
     i++;
     switch(letter):
       case '0': go to STATE 0;
       case '1': go to STATE 1;
  STATE 1:
     if (i == input.length): return True;
     letter = input[i];
     i++;
     switch(letter):
       case '0': go to STATE 2;
       case '1': go to STATE 2;
    \bullet \bullet
```

```
input = 0 1 1 1 1
```



```
def foo(input):
  i = 0;
  STATE 0:
     if (i == input.length): return False;
     letter = input[i];
     i++;
     switch(letter):
       case '0': go to STATE 0;
       case '1': go to STATE 1;
  STATE 1:
     if (i == input.length): return True;
     letter = input[i];
     i++;
     switch(letter):
       case '0': go to STATE 2;
       case '1': go to STATE 2;
    \bullet \bullet
```

```
input = 0 1 1 1 1
```



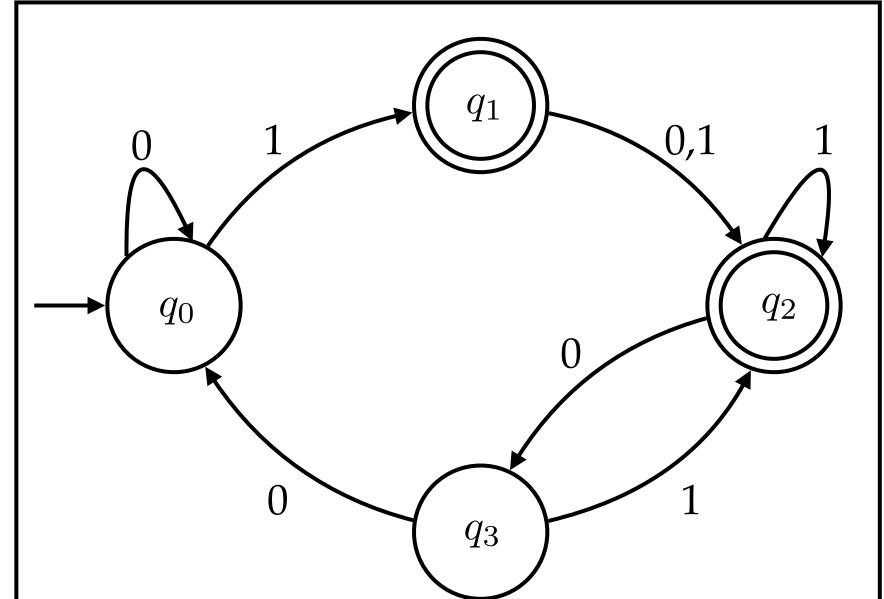
```
def foo(input):
    i = 0;
STATE 0:
    if (i == input.length): return False;
    letter = input[i];
    i++;
    switch(letter):
        case '0': go to STATE 0;
        case '1': go to STATE 1;
```

```
input = 0 1 1 1 1
```

STATE 1:

 \bullet \bullet

```
if (i == input.length): return True;
letter = input[i];
i++;
switch(letter):
   case '0': go to STATE 2;
   case '1': go to STATE 2;
```



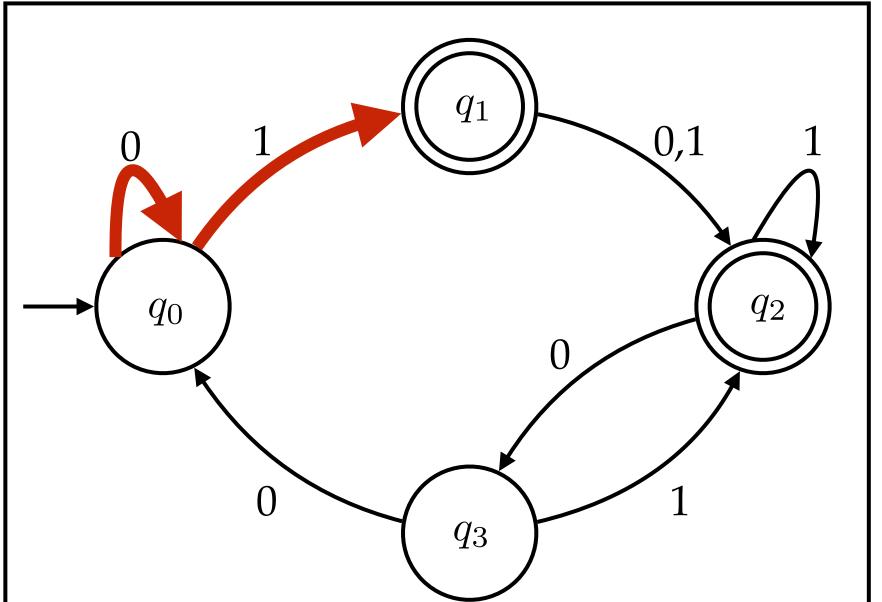
```
def foo(input):
    i = 0;
STATE 0:
    if (i == input.length): return False;
    letter = input[i];
    i++;
    switch(letter):
        case '0': go to STATE 0;
        case '1': go to STATE 1;
```

```
input = 0 1 1 1 1
```

STATE 1:

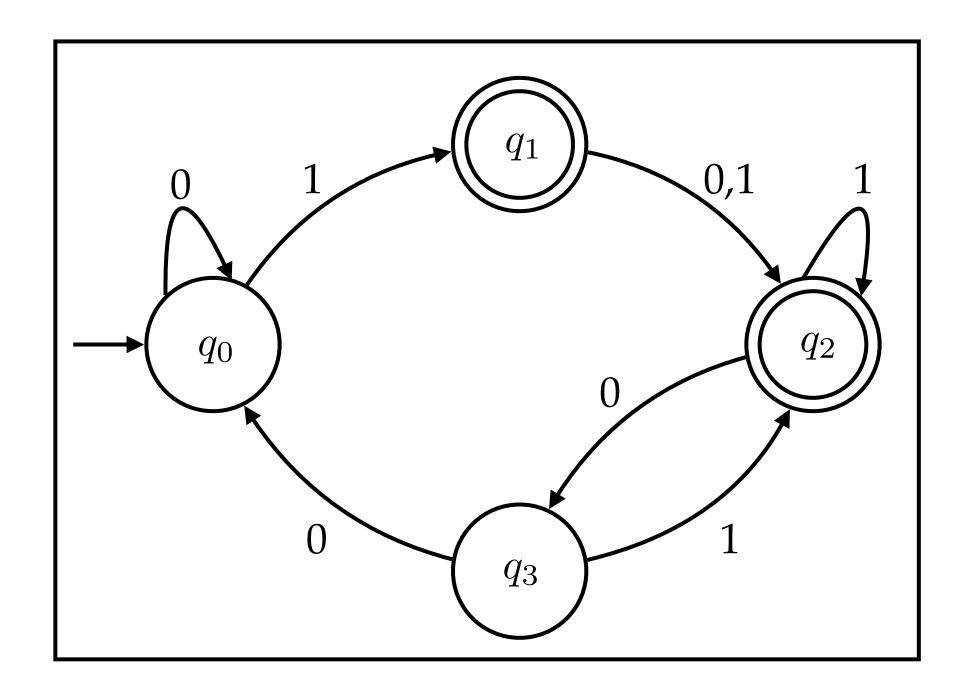
 \bullet \bullet

```
if (i == input.length): return True;
letter = input[i];
i++;
switch(letter):
   case '0': go to STATE 2;
   case '1': go to STATE 2;
```



```
def foo(input):
  i = 0;
  STATE 0:
     if (i == input.length): return False;
     letter = input[i];
     i++;
     switch(letter):
       case '0': go to STATE 0;
       case '1': go to STATE 1;
  STATE 1:
     if (i == input.length): return True;
     letter = input[i];
     i++;
     switch(letter):
       case '0': go to STATE 2;
       case '1': go to STATE 2;
   \bullet \bullet
```

```
input = 0 1 1 1 1
```

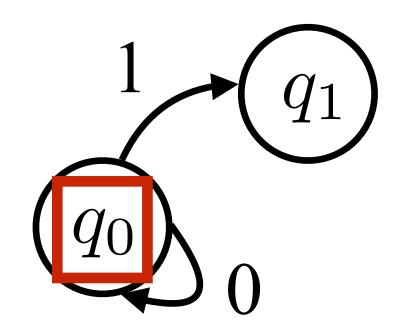


Formal Definition

Definition: A deterministic finite automaton (DFA)

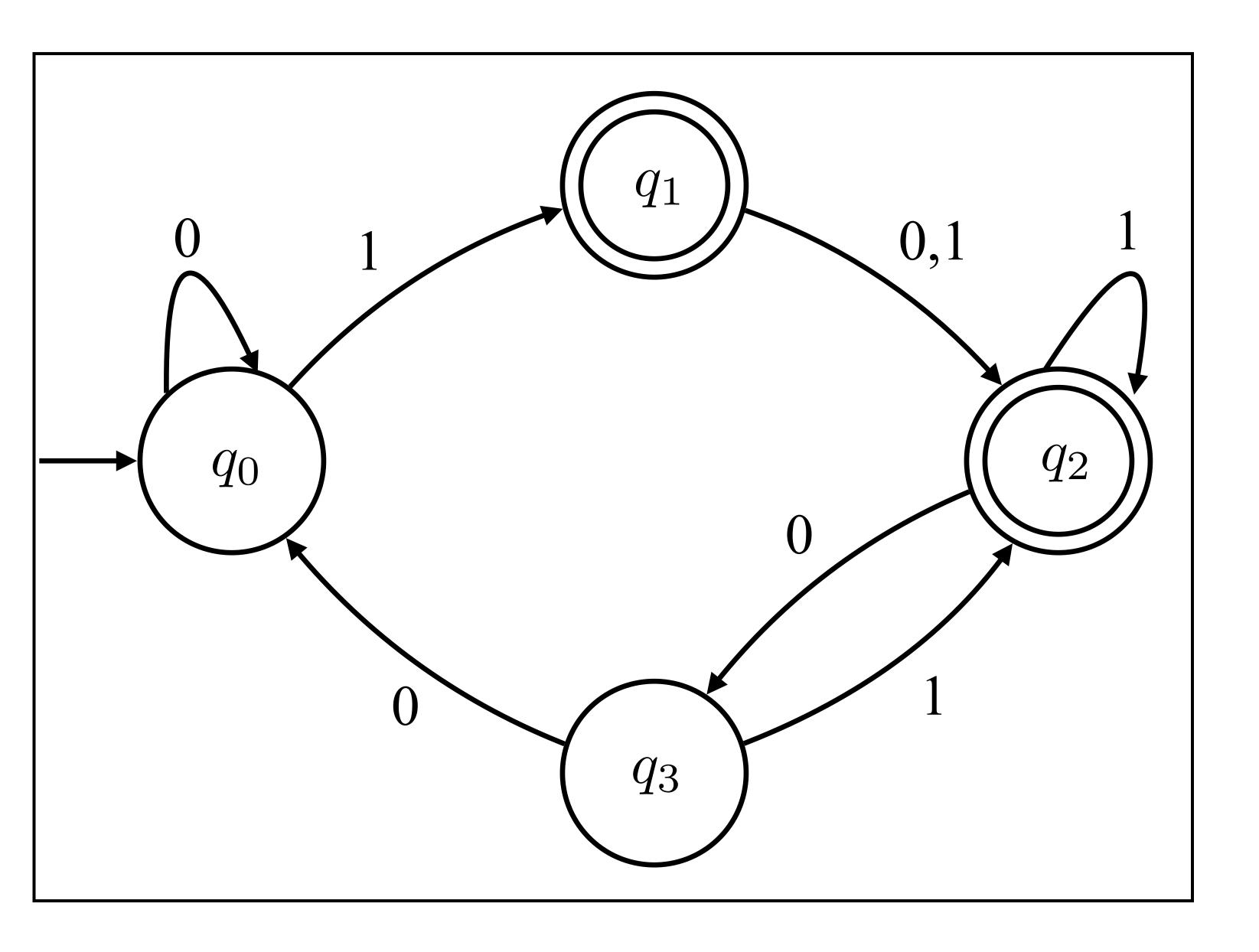
is a 5-tuple $M=(Q,\Sigma,\delta,q_0,F)$ where:

- Q is a finite, non-empty set (called the set of states);
- Σ is a finite, non-empty set (called the *alphabet*);
- δ is a function of the form $\delta: Q \times \Sigma \to Q$; (called the **transition function**);
- q_0 is an element of Q (called the start state);
- F is a subset of Q (called the set of accepting states).



$$\delta(q_0, 1) = q_1$$

$$\delta(q_0,0) = q_0$$



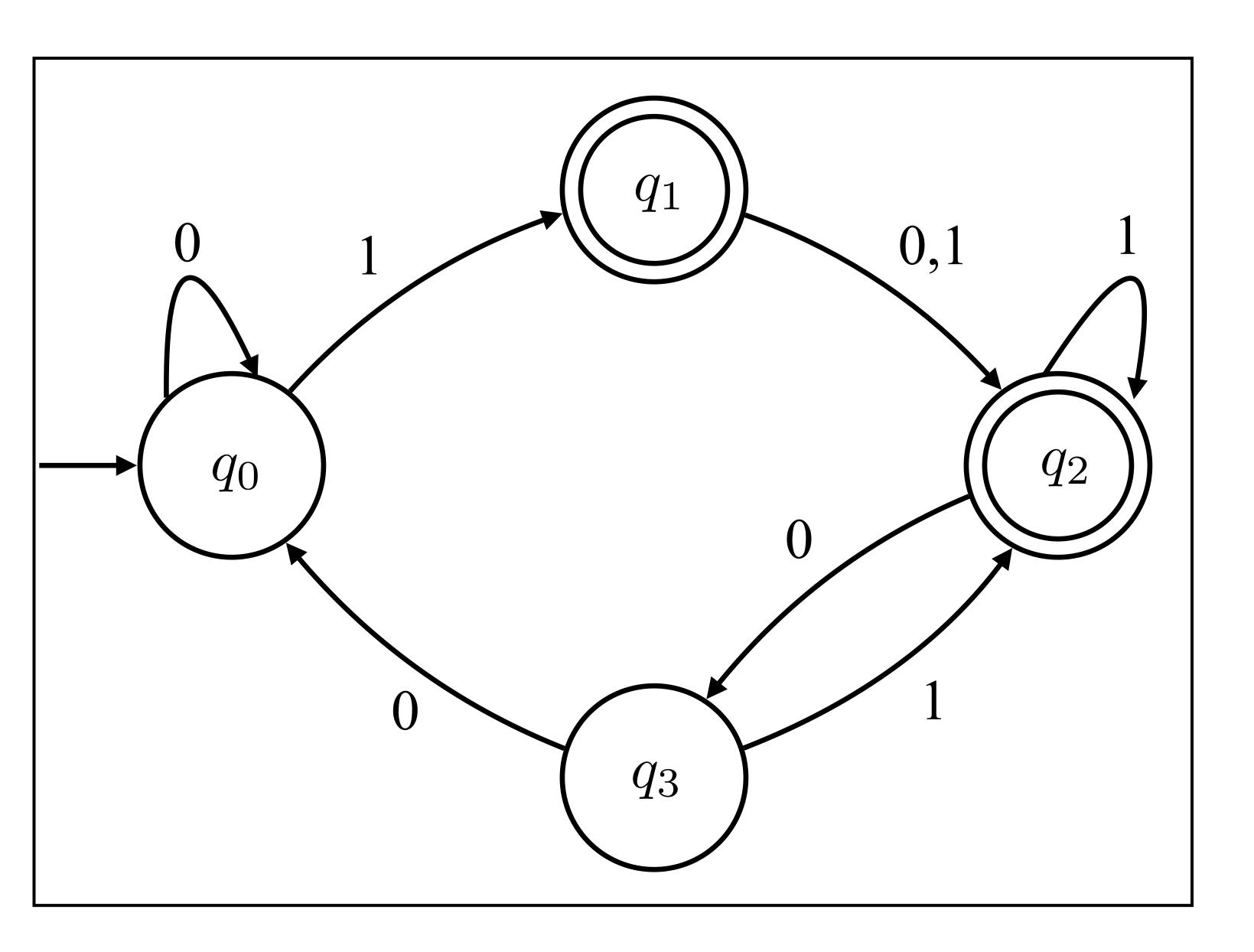
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0,1\}$$

$$\delta: Q \times \Sigma \to Q$$

δ_			0	1	
	q_0	q_0			
	q_1				
	q_2				
	q_3				



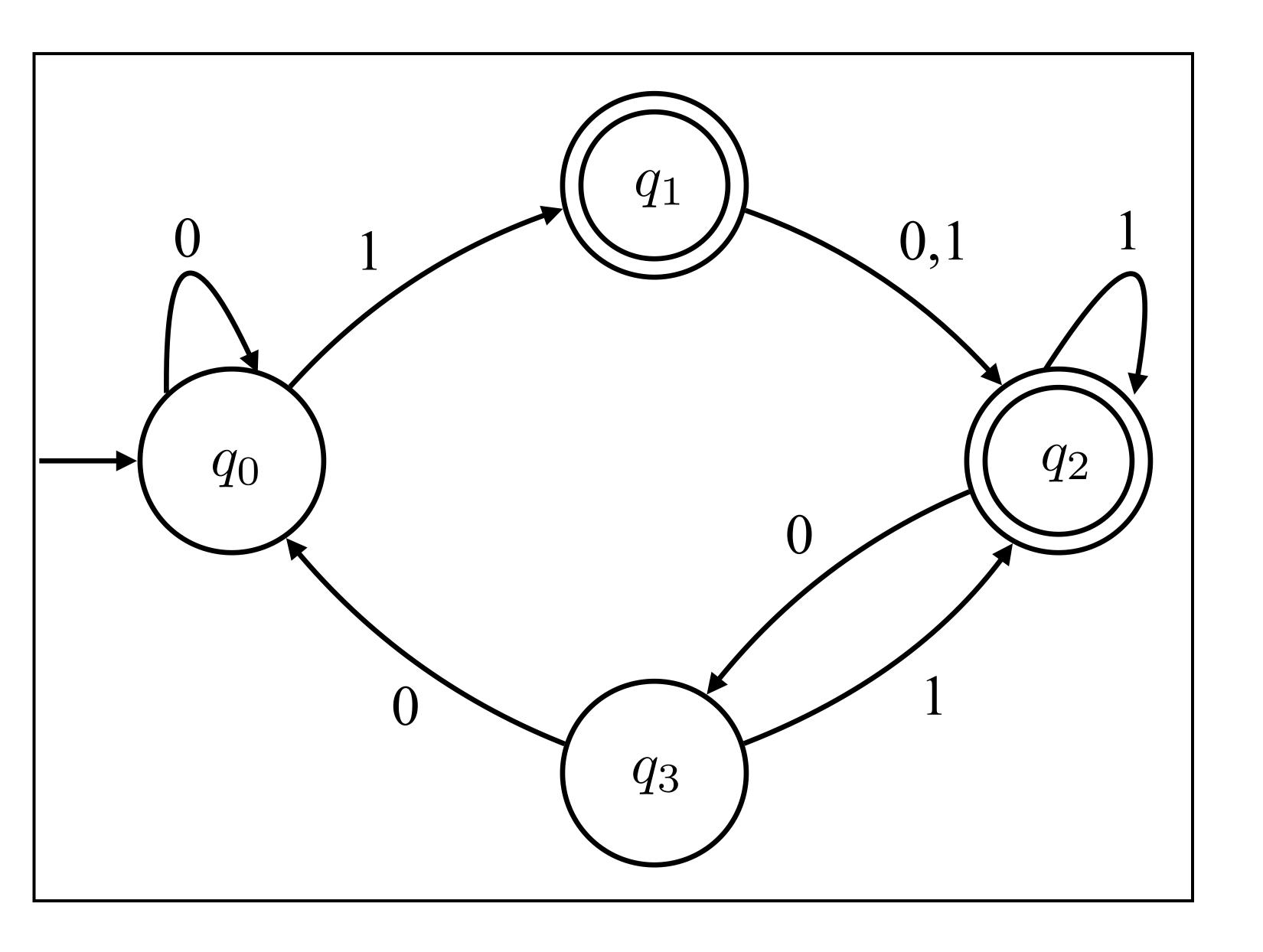
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0,1\}$$

$$\delta: Q \times \Sigma \to Q$$

δ		0	1	
	q_0	q_0	q_1	
	q_1			
	q_2			
	q_3			



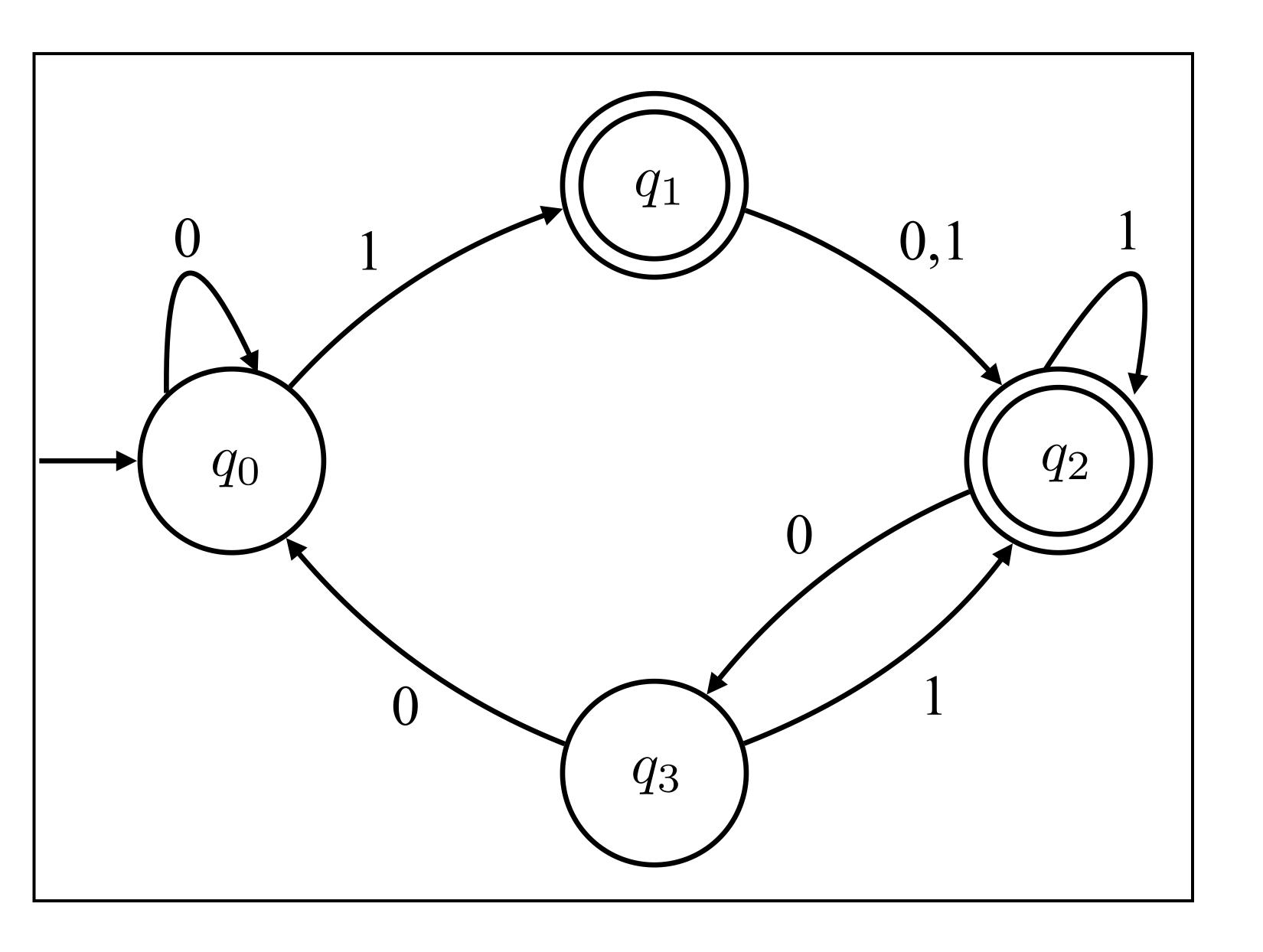
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0,1\}$$

$$\delta: Q \times \Sigma \to Q$$

	δ			0		1	
q_0		q_0			q_1		
	q_1			q_0 q_2			
	q_2						
q_3							



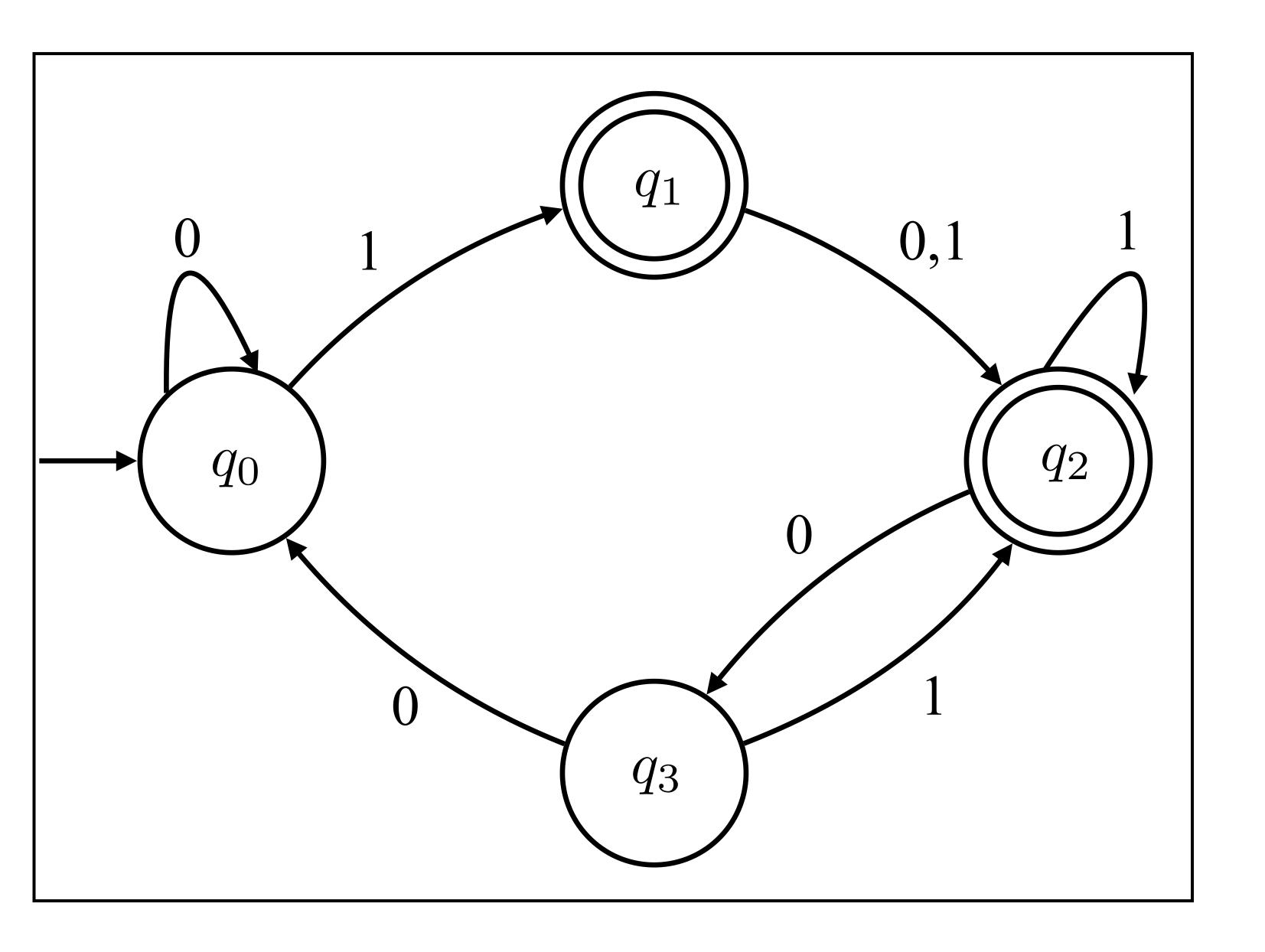
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0,1\}$$

$$\delta: Q \times \Sigma \to Q$$

δ		0		1	
q_0		q_0	q_1		
	q_1	q_2		q_2	
	q_2				
q_3					



$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0,1\}$$

$$\delta: Q \times \Sigma \to Q$$

δ	0	1
q_0	q_0	q_1
q_1	q_2	q_2
q_2	q_3	q_2
q_3	q_0	q_2

 q_0 is the start state

$$F = \{q_1, q_2\}$$

Formal definition: DFA accepting a string

Useful Notation:

For $q \in Q, w \in \Sigma^*$:

 $\delta^*(q,w)=$ state we end up at when we start at q and read w.

$$= \delta(\dots \delta(\delta(\delta(q, w_1), w_2), w_3), \dots, w_n).$$

Definition: We say DFA M accepts w if $\delta^*(q_0, w) \in F$.

Otherwise *M* rejects w.

Definition: Regular languages

Definition: A language L is called **regular** if there is some DFA solving L.

The Big Question

Are all languages regular?

Regular languages

```
L = \{110,101\}
L = \{0,1\}^* \setminus \{110,101\}
L = \{x \in \{0,1\}^* : x \text{ starts and ends with same bit}\}
L = \{x \in \{0,1\}^* : |x| \text{ is divisible by 2 or 3}\}
L = \{\epsilon,110,110110,110110110,...\}
L = \{x \in \{0,1\}^* : x \text{ contains the substring 110}\}
L = \{x \in \{0,1\}^* : 10 \text{ and 01 occur equally often in } x\}
```

?

How to choose a candidate non-regular language?

What are the key limitations of DFAs?

- Scans input once.
- Constant number of states. (constant memory)

Theorem: The language consisting of all strings with an equal number of 0's and 1's is **not** regular.

Theorem: The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is **not** regular.

$$L = \{\epsilon, 01, 0011, 000111, \ldots\}$$

Theorem: The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is **not** regular.

Intuition:

Seems DFA would need to remember # 0's it sees.

But it has a constant number of states. (and no other way of remembering things)

Careful:

 $L = \{x \in \{0,1\}^* : 01 \text{ and } 10 \text{ occur equally often in } x\}$ is regular!

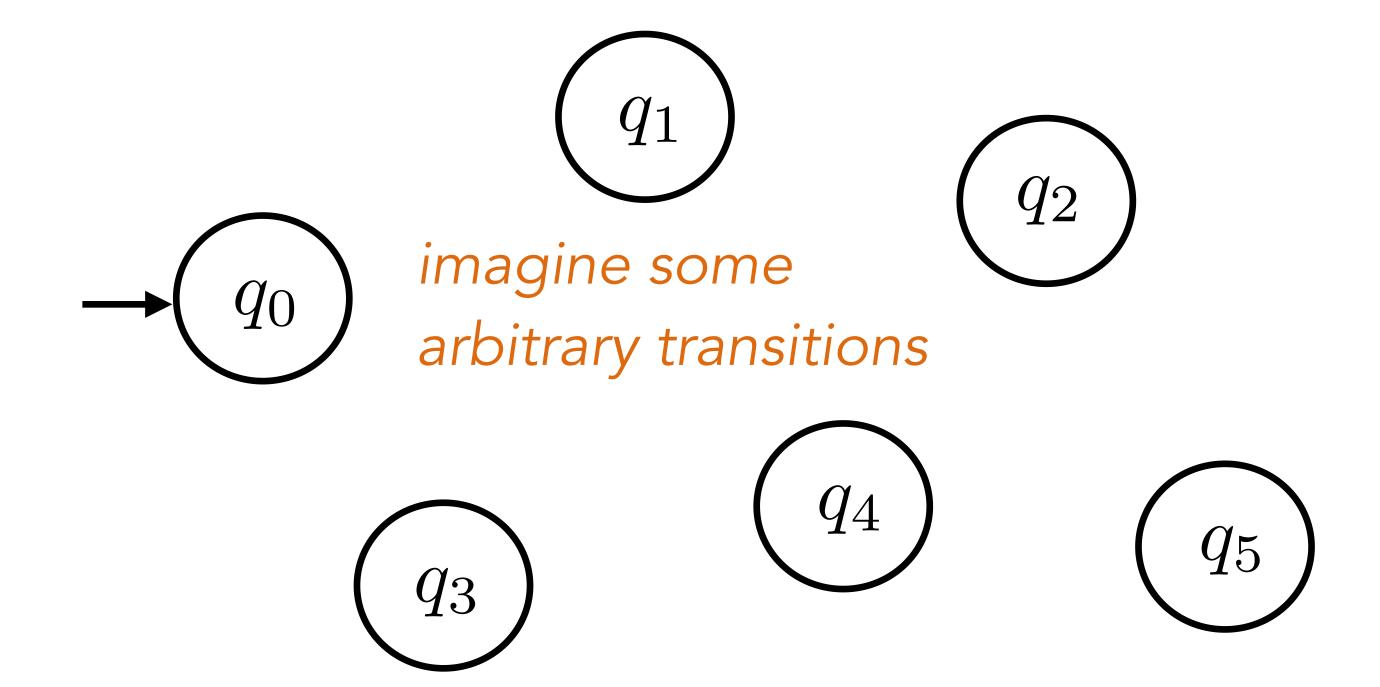
Theorem: The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is **not** regular.

A key component of the proof:

Pigeonhole principle (PHP)

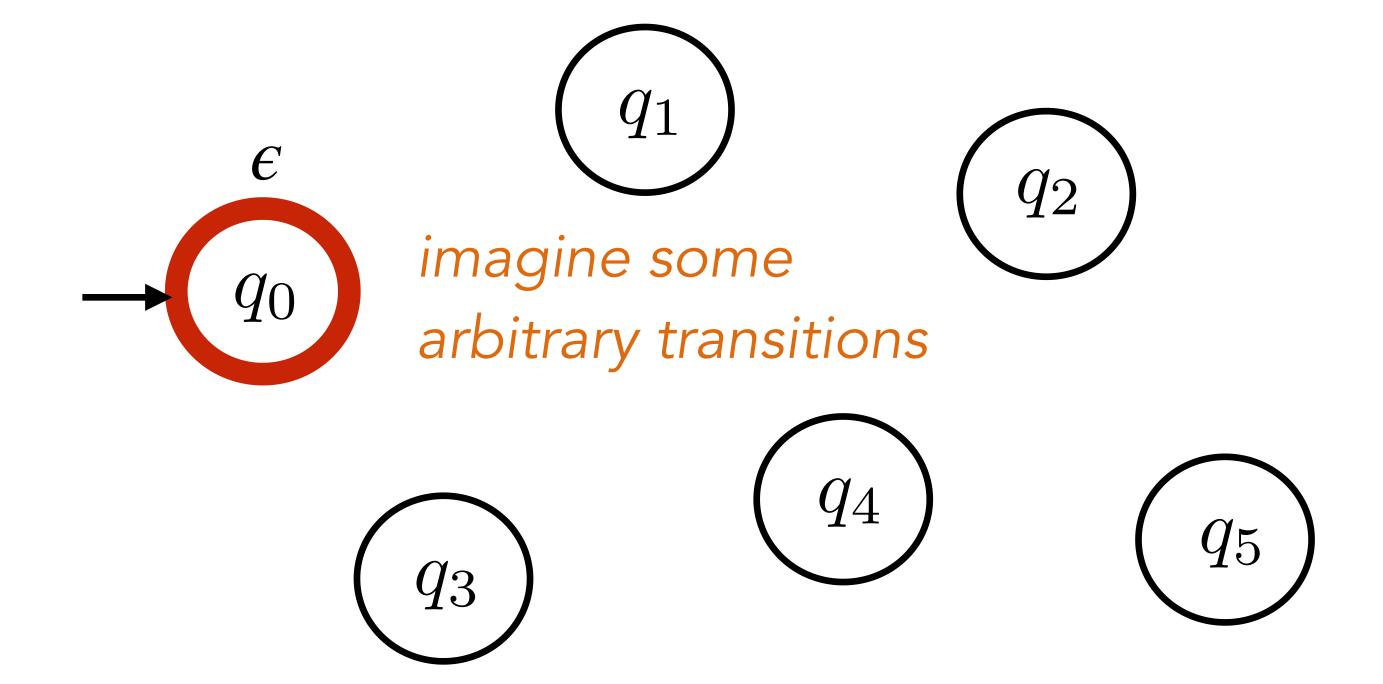
$L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular - Proof idea

Suppose a DFA with 6 states solves $\{0^n1^n : n \in \mathbb{N}\}$.



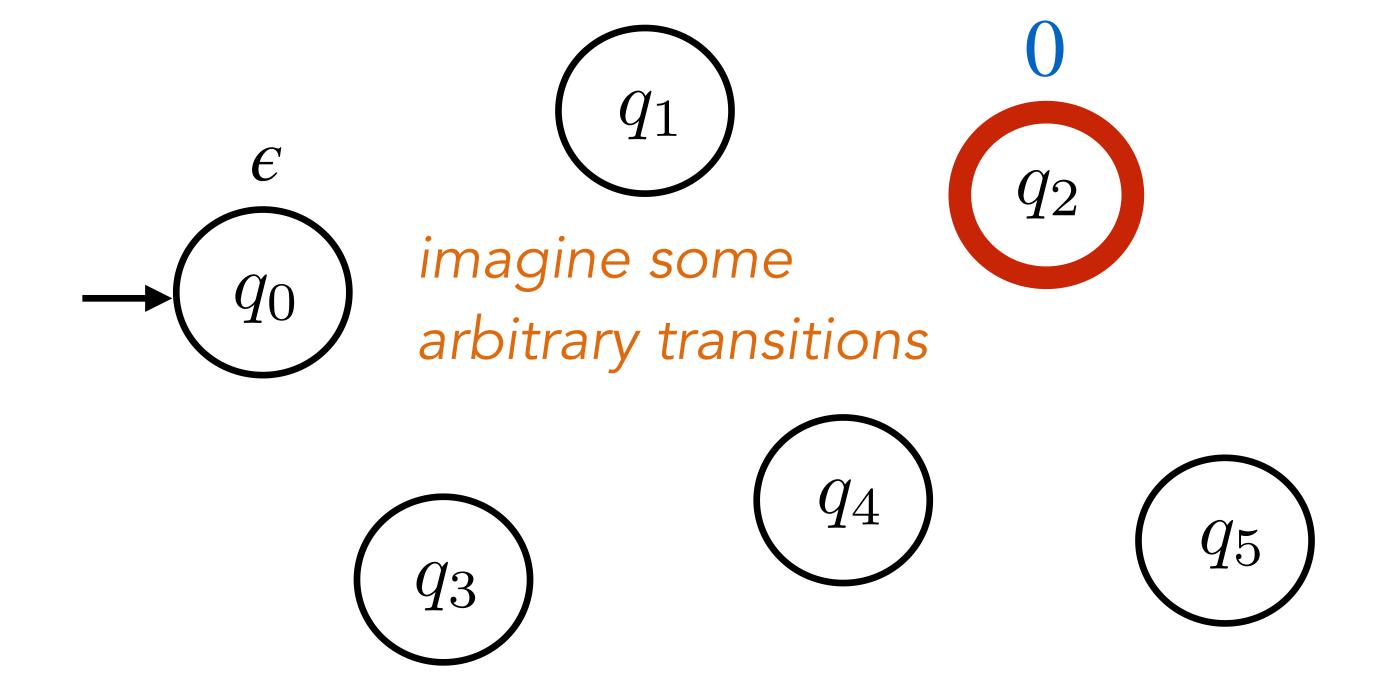
$L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular - Proof idea

Suppose a DFA with 6 states solves $\{0^n1^n : n \in \mathbb{N}\}$.

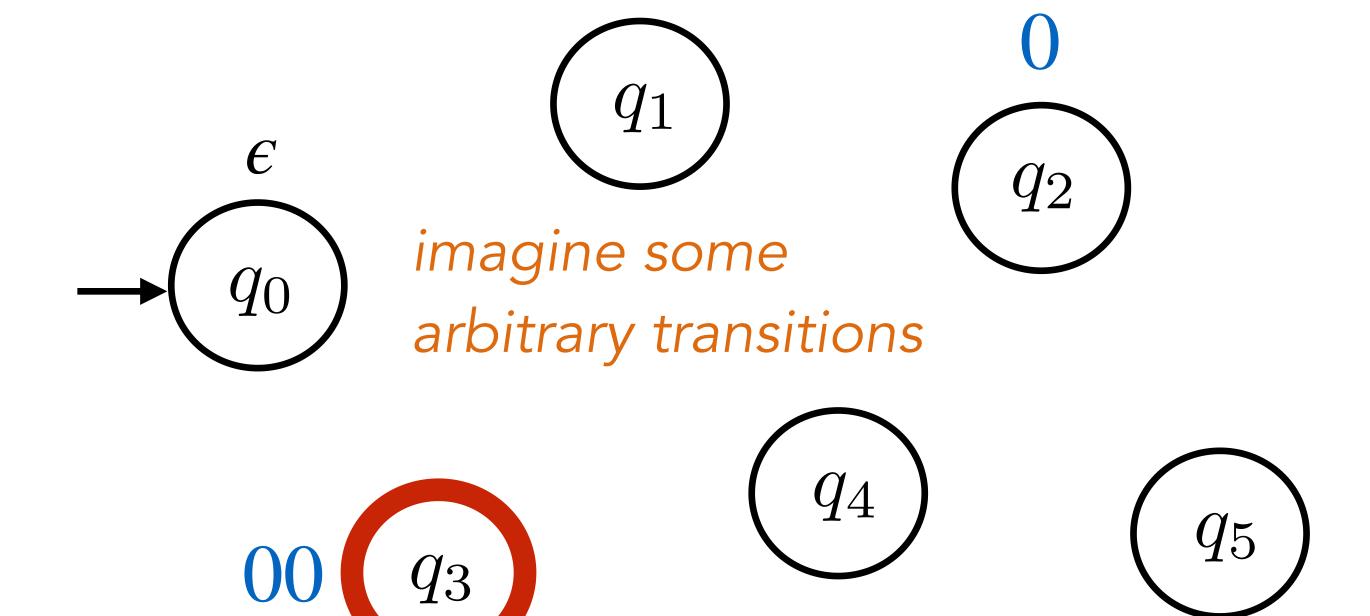


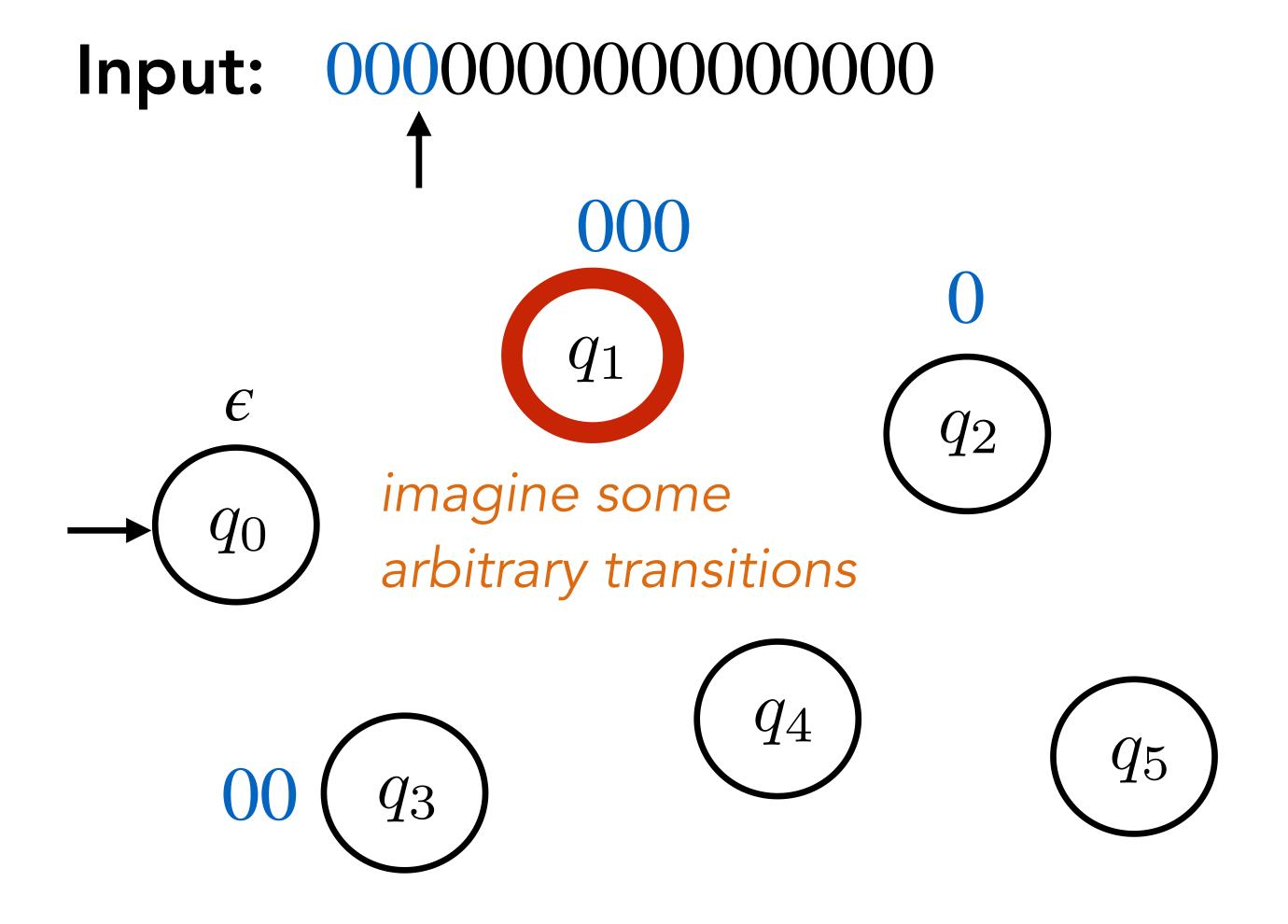
$L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular - Proof idea

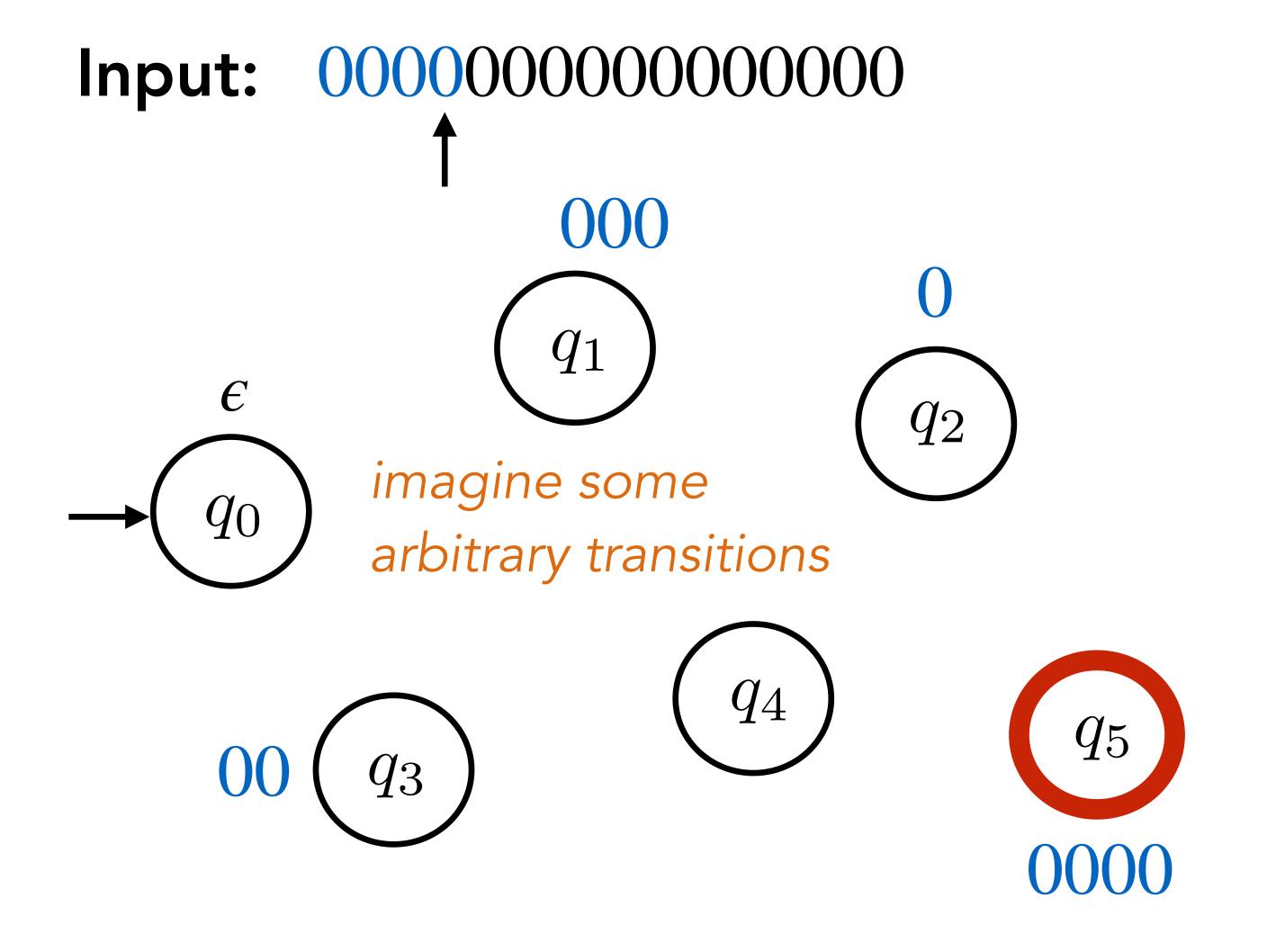
Suppose a DFA with 6 states solves $\{0^n1^n : n \in \mathbb{N}\}$.

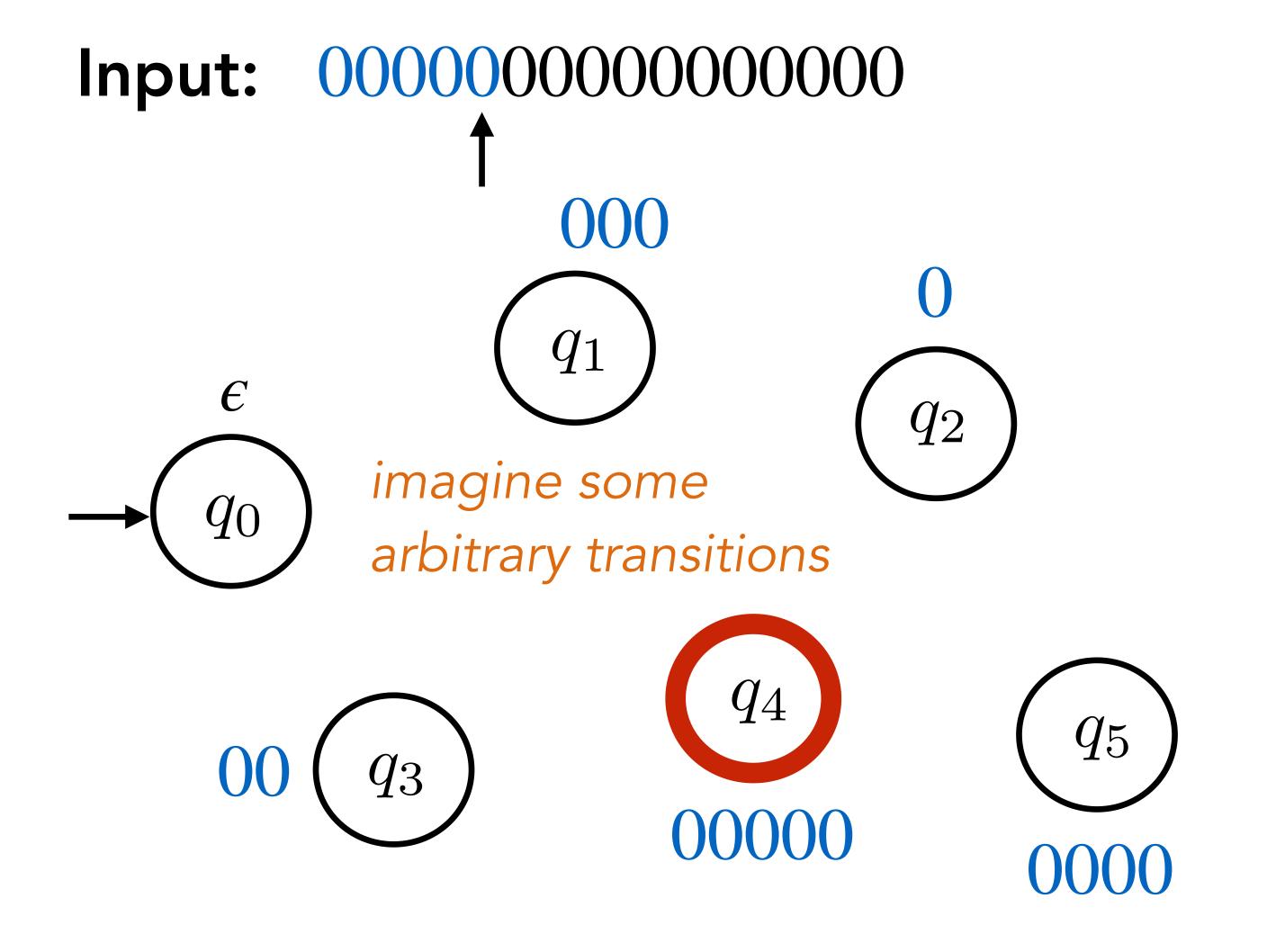


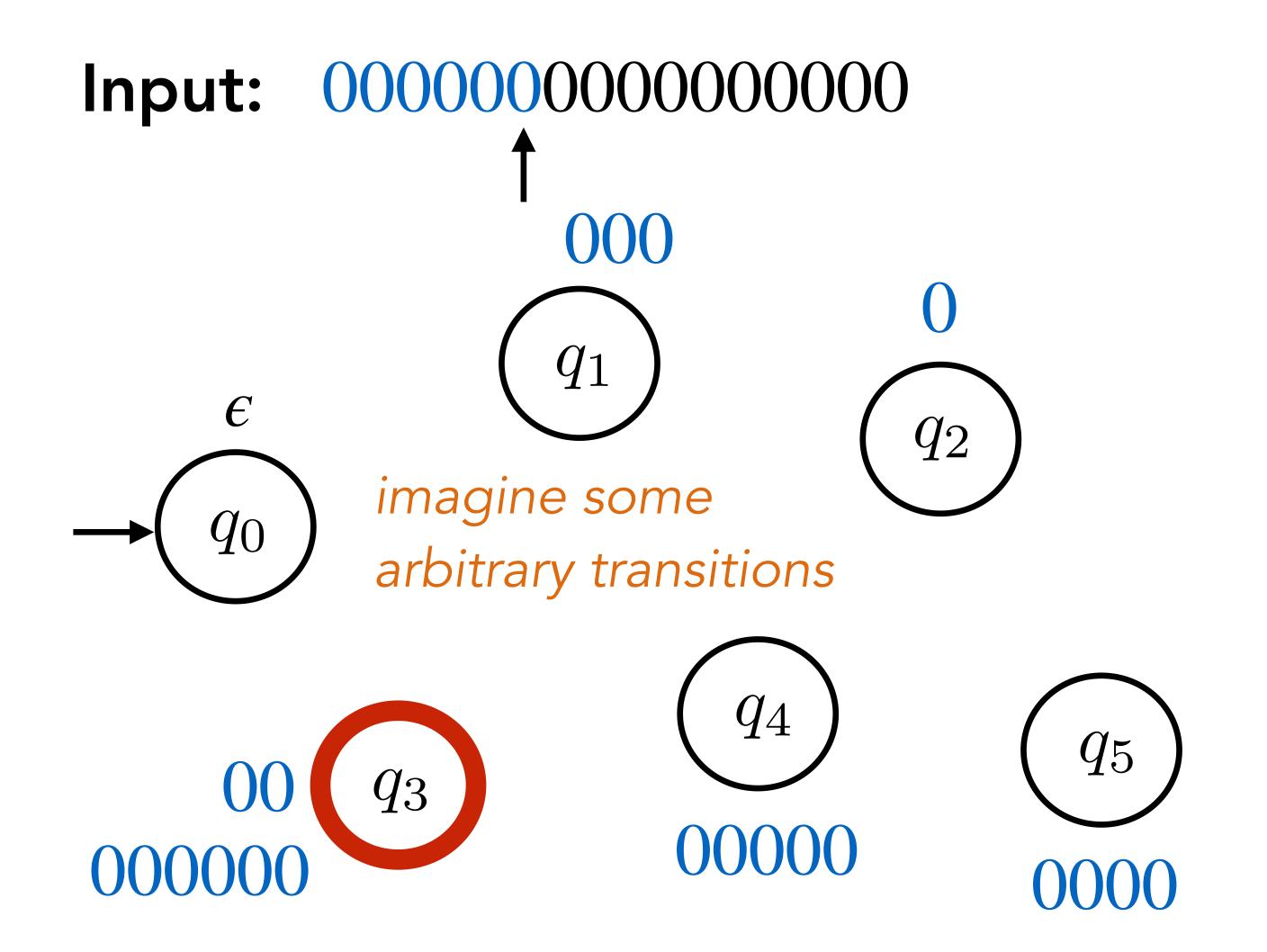
Suppose a DFA with 6 states solves $\{0^n1^n : n \in \mathbb{N}\}$.



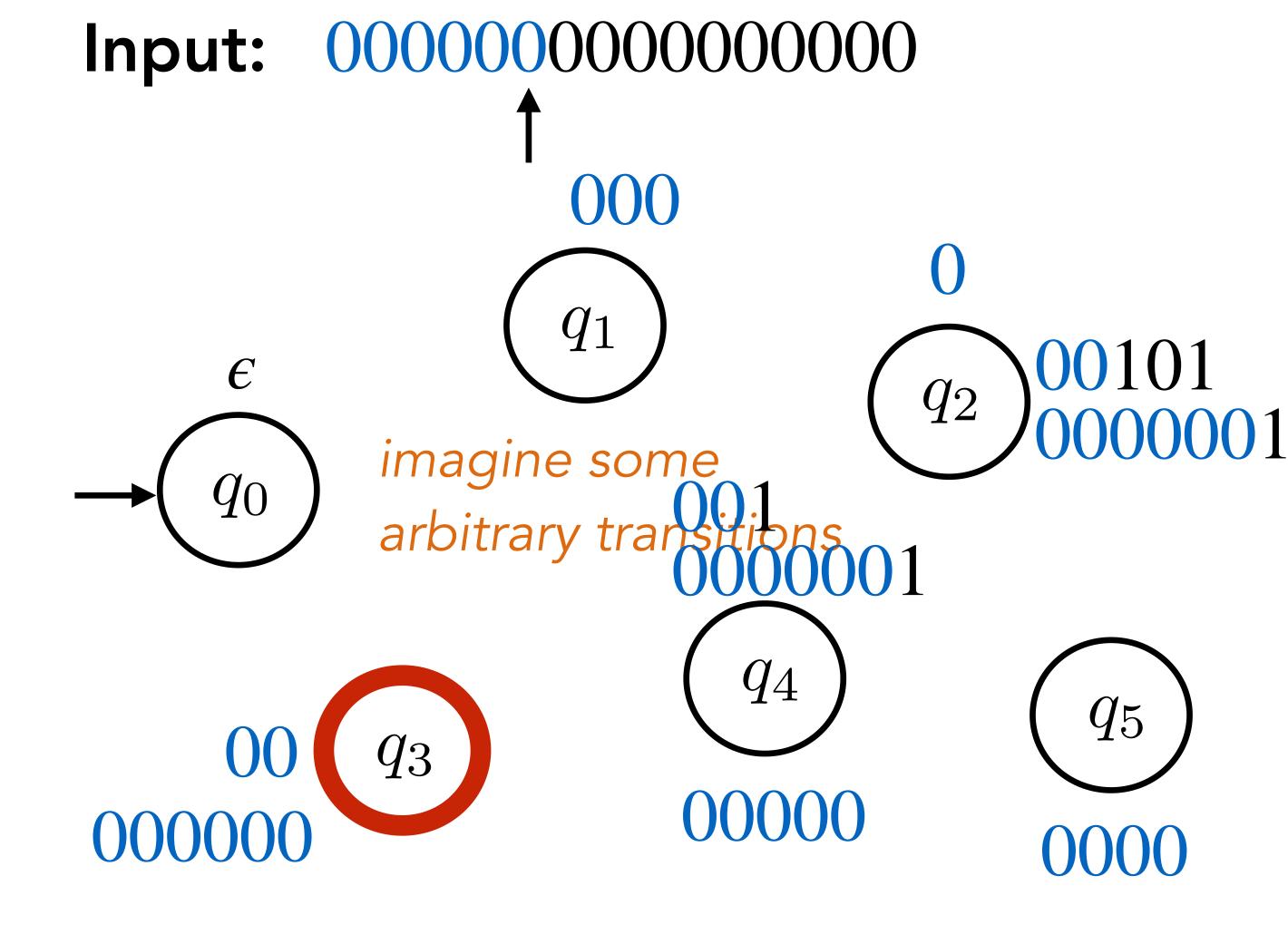








Suppose a DFA with 6 states solves $\{0^n1^n : n \in \mathbb{N}\}$.



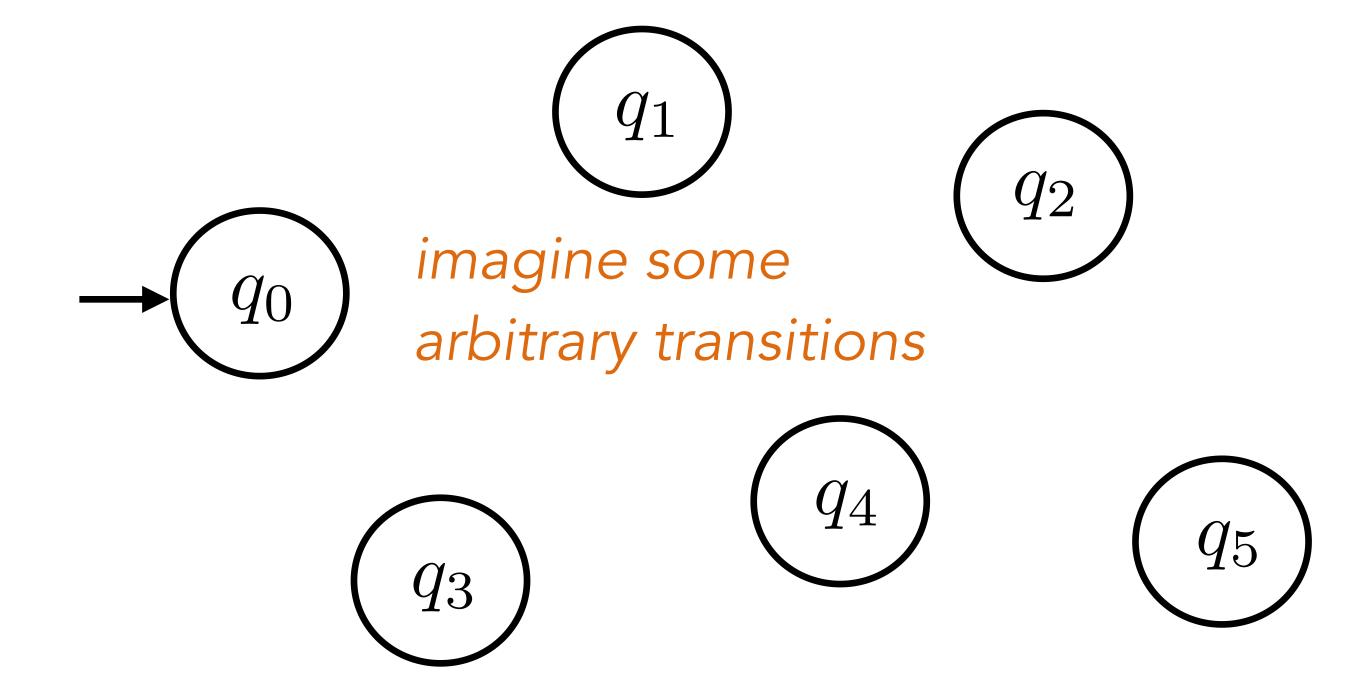
After 00 and 000000 we ended up in the same state q_3 .

For any string z, $1 \quad 00z$ and 000000z 00101 must end up in the same state.

0011 and 00000011 must end up in the same state.

But: 0011 —> accepting state 00000011 —> rejecting state

Suppose a DFA with 6 states solves $\{0^n1^n : n \in \mathbb{N}\}$.



AFSOC \exists a DFA solving L. Let k be the number of states of the DFA.

Consider the following set of k + 1 strings $P = \{\epsilon, 0, 00, 000, \dots, 0^k\}$.

By PHP, $\exists x,y \in P$ such that x and y end up in the same state.

So $\exists i, j, i \neq j$, such that $x = 0^i$ and $y = 0^j$ end up in the same state.

Therefore $\forall z \in \{0,1\}^*$, $0^i z$ and $0^j z$ end up in the same state.

However for $z = 1^i$, $0^i z = 0^i 1^i$ must end in an accepting state,

whereas since $i \neq j$, $0^{j}z = 0^{j}1^{i}$ must end in a rejecting state.

This is the desired contradiction.

Strategy for proving a language is not regular

1. Set up a proof by contradiction:

Assume that the language is regular.

So a DFA with k states solves it.

2. Pick your pigeons: (Would $P = \{1, 11, 111, ...\}$ work in previous proof?)

Identify k+1 strings as the pigeons.

Two pigeons, x and y, must end up in the same state.

For any string z, xz and yz end up in the same state.

3. Reach a contradiction:

Find a string z such that exactly one of xz, yz is in L.

Exercise:

```
\Sigma = \{a,b,c\} Show L = \{ca^nb^{2n}: n \in \mathbb{N}\} is not regular. L = \{c,cabb,caabbbb,caaabbbbbb,...\}
```

Exercise:

$$\Sigma = \{0\}$$
 Show $L = \{0^{2^n} : n \in \mathbb{N}\}$ is not regular. $L = \{0, 00, 0000, 00000000, \ldots\}$

All languages

Regular languages

```
L = \{110,101\}
L = \{0,1\}^* \setminus \{110,101\}
L = \{x \in \{0,1\}^* : x \text{ starts and ends with same bit}\}
L = \{x \in \{0,1\}^* : |x| \text{ is divisible by 2 or 3}\}
L = \{\varepsilon,110,110110,110110110,\ldots\}
L = \{x \in \{0,1\}^* : x \text{ contains the substring 110}\}
L = \{x \in \{0,1\}^* : 10 \text{ and 01 occur equally often in } x\}
```


All languages

Regular languages

```
L = \{110,101\}
L = \{0,1\}^* \setminus \{110,101\}
L = \{x \in \{0,1\}^* : x \text{ starts and ends with same bit}\}
L = \{x \in \{0,1\}^* : |x| \text{ is divisible by 2 or 3}\}
L = \{e,110,110110,110110110,...\}
L = \{x \in \{0,1\}^* : x \text{ contains the substring 110}\}
L = \{x \in \{0,1\}^* : 10 \text{ and 01 occur equally often in } x\}
```

```
\{0^{n}1^{n}: n \in \mathbb{N}\}
\{0^{2^{n}}: n \in \mathbb{N}\}
\vdots
```