# CS251**Great Ideas** in Theoretical Computer Science

# Deterministic Finite Automata Z





#### Quick review



 $M = (Q, \Sigma, \delta, q_0, F)$ 

 $Q = \{q_0, q_1, q_2, q_3\}$  $\Sigma = \{0, 1\}$  $\delta: Q \times \Sigma \to Q$ 

| $\delta$ | 0     | 1     |
|----------|-------|-------|
| $q_0$    | $q_0$ | $q_1$ |
| $q_1$    | $q_2$ | $q_2$ |
| $q_2$    | $q_3$ | $q_2$ |
| $q_3$    | $q_0$ | $q_2$ |

 $q_0$  is the start state  $F = \{q_1, q_2\}$ 



#### L(M) = the set of strings that DFA M accepts.

#### DFA M solves the language L(M). decides computes

### **Definition:** A language L is called **regular** if there is some DFA solving L.







 $\{0^n 1^n : n \in \mathbb{N}\}\$  $\{0^{2^n}:n\in\mathbb{N}\}$ 

### An Application

## An application of DFAs

string S of length n; string w of length k. Input: **<u>Output</u>**: True if w occurs in S; False otherwise.

### S = acbbabcbbcbaaabaaccccacbaaabcbcbaabw = acba

#### Naïve algorithm:

 $\sim nk$  steps.



Can we do better?

## An application of DFAs

string S of length n; string w of length k. Input: **<u>Output</u>**: True if w occurs in S; False otherwise.

### **DFA** solution:

We want to know if  $S \in L_w = \Sigma^* \cdot \{w\} \cdot \Sigma^*$ .

 $L_{w}$  is regular! So there is a DFA  $M_{w}$  computing it.

Feed S to  $M_w$ . ~ n steps.

Time to build  $M_w$ ? Simple algorithm:  $\sim k^3$  steps.

Knuth-Morris-Pratt 1977: ~ k steps.

**Closure properties of regular languages** 

## **Regular languages are closed under complementation**

#### **Proposition:** If $L \subseteq \Sigma^*$ is regular, then so is $\overline{L} = \Sigma^* \setminus L$ .

**<u>Proof</u>**: If *L* is regular, then there is a DFA  $M = (Q, \Sigma, \delta, q_0, F)$ solving L. Then the DFA  $M' = (Q, \Sigma, \delta, q_0, Q \setminus F)$ solves  $\overline{L}$ . So  $\overline{L}$  is regular.









## Regular languages are closed under union

**Theorem:** If  $L_1 \subseteq \Sigma^*$  and  $L_2 \subseteq \Sigma^*$  are regular, then so is the union  $L_1 \cup L_2$ .

**<u>Proof</u>**: Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA solving  $L_1$ and let  $M' = (Q', \Sigma, \delta', q'_0, F')$  be a DFA solving  $L_2$ . We construct a DFA  $M'' = (Q'', \Sigma, \delta'', q_0'', F'')$  solving  $L_1 \cup L_2$  as follows:

**STEP 1:** Imagine yourself as a DFA. Rules:

1) Can only scan the input once, from left to right.

2) Can only remember "constant" amount of info. cannot change based on input length

**STEP 2:** Formally define the DFA.



### **STEP 1:** Imagine yourself as a DFA.



#### Example:

strings with even  $L_1 =$ number of 1's

strings with length divisible by 3  $L_{2} =$ 







Input:





#### How would you solve the union of regular languages? M1 0 1 0 0 1 Input: $q_{\mathrm{even}}$ Thread 1: $q_{e}$





#### How would you solve the union of regular languages? M0 1 0 1 Input: *Y*even Thread 1: $q_{e}$ $q_{o}$











#### How would you solve the union of regular languages? M**1 0 1 0 1** Input: $q_{\mathrm{even}}$ Thread 1: $q_{e}$ $q_{o}$ $q_{o}$ $q_{e}$





#### How would you solve the union of regular languages? M1 0 1 0 1 Input: even Thread 1: q<sub>e</sub> q<sub>o</sub> q<sub>o</sub> q<sub>e</sub> q<sub>e</sub>











Input:





Input:

**Decision:** 





1 0 Input:





- 1 0 Input:
- constant amount of information?

















































**STEP 2:** Formally define the DFA.



## Formally defining the union construction

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA solving  $L_1$ .

Let  $M' = (Q', \Sigma, \delta', q'_0, F')$  be a DFA solving  $L_2$ .

We construct a DFA  $M'' = (Q'', \Sigma, \delta'', q_0'', F'')$  solving  $L_1 \cup L_2$ :

- $-Q'' = Q \times Q' = \{(q,q') : q \in Q, q' \in Q'\}$
- $-\delta'': Q'' \times \Sigma \to Q'', \qquad \delta'': (Q \times Q') \times \Sigma \to (Q \times Q')$ 
  - for  $q \in Q$ ,  $q' \in Q'$ ,  $\sigma \in \Sigma$ :  $\delta''((q,q'),\sigma) = (\delta(q,\sigma), \delta'(q',\sigma))$
- $-q_0'' = (q_0, q_0')$
- $-F'' = \{(q,q') : q \in F \text{ or } q' \in F'\}$

It remains to show that  $L(M'') = L_1 \cup L_2$ .  $L(M'') \subseteq L_1 \cup L_2: \qquad \dots \qquad \qquad L_1 \cup L_2 \subseteq L(M''): \qquad \dots$ 

## **Regular languages are closed under intersection**

**<u>Corollary</u>**: If  $L_1 \subseteq \Sigma^*$  and  $L_2 \subseteq \Sigma^*$  are regular, then so is the intersection  $L_1 \cap L_2$ .

**Proof:** Follows from the following 3 facts.

- $-L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}.$
- Regular languages are closed under complementation.
- Regular languages are closed under union.



## **Regular languages are closed under intersection**

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA solving  $L_1$ . Let  $M' = (Q', \Sigma, \delta', q'_0, F')$  be a DFA solving  $L_2$ . We construct a DFA  $M'' = (Q'', \Sigma, \delta'', q_0'', F'')$  solving  $L_1 \cup L_2$ :  $-Q'' = Q \times Q' = \{(q,q') : q \in Q, q' \in Q'\}$  $-\delta'': O'' \times \Sigma \to O'', \qquad \delta'': (O \times O') \times \Sigma \to (O \times O')$ for  $q \in Q$ ,  $q' \in Q'$ ,  $\sigma \in \Sigma$ :  $\delta''((q,q'),\sigma) = (\delta(q,\sigma), \delta'(q',\sigma))$  $-q_0'' = (q_0, q_0')$  $-F'' = \{(q,q') : q \in F \iff q' \in F'\}$ 

AND

### More closure properties

#### **Closed under union:**

 $L_1, L_2$  regular  $\implies L_1 \cup L_2$  regular.

### Closed under concatenation: $L_1, L_2$ regular $\implies L_1L_2$ regular.

### Closed under star: L regular $\implies L^*$ regular.

## Simple languages vs regular languages



What is the relationship between simple languages and regular languages?

#### simple $\subseteq$ regular

In fact: simple = regular

## Simple languages vs regular languages

- **Theorem:** Can define **regular languages** recursively as follows:
- Ø is regular.
- For every  $a \in \Sigma$ ,  $\{a\}$  is regular.
- $L_1$ ,  $L_2$  regular  $\Longrightarrow L_1 \cup L_2$  regular.
- $L_1$ ,  $L_2$  regular  $\Longrightarrow L_1 \cdot L_2$  regular.
- L regular  $\Longrightarrow L^*$  regular.

### **Closed under concatenation**

### **Theorem:** If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is the concatenation $L_1L_2$ .

#### $L_1 L_2 = \{ uv : u \in L_1, v \in L_2 \}$

 $w \in L_1L_2$  iff there is an index *i* such that  $w_1 \dots w_i \in L_1$  and  $w_{i+1} \dots w_n \in L_2$ .





**STEP 1:** Imagine yourself as a DFA. Rules:

1) Can only scan the input once, from left to right.

2) Can only remember "constant" amount of info. cannot change based on input length

**STEP 2:** Formally define the DFA.



### **STEP 1:** Imagine yourself as a DFA.





Given  $w \in \Sigma^*$ , we need to decide if we can write w = uv such that M accepts u and M' accepts v.

**Problem:** Don't know where u ends, v begins. When do you stop simulating M and start simulating M'?





Suppose God tells you u ends at  $w_3$ .

1 0 0 0 0 0 1  $w_1$  $w_3$  $w_4$  $w_5$  $w_6$  $w_8$  $w_9$  $w_2$  $W_7$  $q_0$  $q_1$  $q_1$ 

<u>thread</u>: a simulation of M and then M' that corresponds to breaking up input w as uv where  $u \in L_1$ .



# $w_{10}$



<u>thread</u>: a simulation of M and then M' that corresponds to breaking up input w as uv where  $u \in L_1$ .

 $w \in L_1L_2$  iff  $\exists$  a thread ending in an accepting state of M'.





|        | 0     | 0     | 1       | 1      | 0       | 0      | 1       | 0      | 0      | 1        | 1        |
|--------|-------|-------|---------|--------|---------|--------|---------|--------|--------|----------|----------|
|        | $w_1$ | $w_2$ | $w_3$   | $w_4$  | $w_5$   | $w_6$  | $w_7$   | $w_8$  | $w_9$  | $w_{10}$ | $w_{11}$ |
| $q_0$  | $q_1$ | $q_1$ | $(q_3)$ | $q_2$  | $(q_4)$ | $q_1$  | $(q_3)$ | $q_1$  | $q_1$  | $(q_3)$  | $q_2$    |
| thread | 1     |       | $q'_0$  | $q_2'$ | $q_2'$  | $q_2'$ | $q_1'$  | $q_2'$ | $q_2'$ | $q_1'$   | $q_0'$   |
| thread | 2     |       |         |        | $q_0'$  | $q_1'$ | $q_0'$  | $q_1'$ | $q_2'$ | $q_1'$   | $q_0'$   |
| thread | 3     |       |         |        |         |        | $q_0'$  | $q_1'$ | $q_2'$ | $q_1'$   | $q_0'$   |
| thread | 4     |       |         |        |         |        |         |        |        | $q'_0$   | $q_2'$   |



|        | 0     | 0     | 1       | 1      | 0       | 0      | 1       | 0      | 0      | 1        | 1        |
|--------|-------|-------|---------|--------|---------|--------|---------|--------|--------|----------|----------|
|        | $w_1$ | $w_2$ | $w_3$   | $w_4$  | $w_5$   | $w_6$  | $w_7$   | $w_8$  | $w_9$  | $w_{10}$ | $w_{11}$ |
| $q_0$  | $q_1$ | $q_1$ | $(q_3)$ | $q_2$  | $(q_4)$ | $q_1$  | $(q_3)$ | $q_1$  | $q_1$  | $(q_3)$  | $q_2$    |
| thread | 1     |       | $q_0'$  | $q_2'$ | $q_2'$  | $q_2'$ | $q_1'$  | $q_2'$ | $q_2'$ | $q_1'$   | $q_0'$   |
| thread | 2     |       |         |        | $q_0'$  | $q_1'$ | $q_0'$  | $q_1'$ | $q_2'$ | $q'_1$   | $q_0'$   |
| thread | 3     |       |         |        |         |        | $q_0'$  | $q_1'$ | $q_2'$ | $q_1'$   | $q_0'$   |
| thread | 4     |       |         |        |         |        |         |        |        | $q'_0$   | $q_2'$   |



At any point, need to remember:

- an element of Q
- a subset of Q'(an element of  $\mathcal{P}(Q')$ )

constant amount of information!



**STEP 2:** Formally define the DFA.



 $M = (Q, \Sigma, \delta, q_0, F)$ 

#### $Q'' = Q \times \mathscr{P}(Q') = \{(q, S) : q \in Q, S \in \mathscr{P}(Q')\}$

 $\delta''$  :

 $q_0'' =$ 

 $F'' = \{(q, S): q \in Q, S \in \mathscr{P}(Q'), S \cap F' \neq \emptyset\}$ 

 $M' = (Q', \Sigma, \delta', q'_0, F')$ 

### Next Chapter



