
CS251

Computer Science
Theoretical

Great Ideas
in

Deterministic Finite Automata 2

Quick review

Q = {q0, q1, q2, q3}
Σ = {0,1}
δ : Q × Σ → Q

δ 0 1
q0
q1
q2
q3

q0
q2

q1
q2

q3
q0

q2
q2

 is the start stateq0

F = {q1, q2}

q0

q1

q2

q3

0 1 0,1 1

0

10

M = (Q, Σ, δ, q0, F)

 = the set of strings that DFA accepts.L(M) M

DFA solves the language . M L(M)
decides
computes

Definition: A language is called regular if
there is some DFA solving .

L
L

All languages
𝒫(Σ*)

?

...

Regular languages

L = {110,101}

L = {0,1}* \ {110,101}

L = {x ∈ {0,1}* : x starts and ends with same bit}

L = {x ∈ {0,1}* : |x | is divisible by 2 or 3}

L = {x ∈ {0,1}* : x contains the substring 110}

L = {x ∈ {0,1}* : 10 and 01 occur equally often in x}

L = {ϵ,110,110110,110110110,…}

All languages
𝒫(Σ*)

{0n1n : n 2 N}

...

{02
n

: n 2 N}

...

Regular languages

L = {110,101}

L = {0,1}* \ {110,101}

L = {x ∈ {0,1}* : x starts and ends with same bit}

L = {x ∈ {0,1}* : |x | is divisible by 2 or 3}

L = {x ∈ {0,1}* : x contains the substring 110}

L = {x ∈ {0,1}* : 10 and 01 occur equally often in x}

L = {ϵ,110,110110,110110110,…}

An Application

An application of DFAs

Naïve algorithm:
 steps.∼ nk

Input:
Output:

S = acbbabcbbcbaaabaaccccacbaaabcbcbaab
w = acba

string of length ; string of length .S n w k
True if occurs in ; False otherwise.w S

Can we do better??

An application of DFAs

DFA solution:

We want to know if .S ∈ Lw = Σ* ⋅ {w} ⋅ Σ*

Input:
Output:

string of length ; string of length .S n w k
True if occurs in ; False otherwise.w S

 is regular! Lw

Feed to .S Mw steps.∼ n

Time to build ?Mw Simple algorithm: steps.∼ k3

Knuth-Morris-Pratt 1977: steps.∼ k

So there is a DFA computing it.Mw

Closure properties of regular languages

If is regular, then there is a DFAL

solving .L

M = (Q, Σ, δ, q0, F)

Regular languages are closed under complementation

Proof:

So is regular.L

Proposition: If is regular, then so is .L ⊆ Σ* L = Σ*\L

Then the DFA

solves . L

M′ = (Q, Σ, δ, q0, Q\F)

Regular languages are closed under union

Theorem: If and are regular,
then so is the union

L1 ⊆ Σ* L2 ⊆ Σ*
L1 ∪ L2 .

Proof: Let be a DFA solving M = (Q, Σ, δ, q0, F) L1

and let be a DFA solving M′ = (Q′ , Σ, δ′ , q′ 0, F′) L2 .
We construct a DFA solvingM′ ′ = (Q′ ′ , Σ, δ′ ′ , q′ ′ 0, F′ ′)

 as follows:L1 ∪ L2

...

The Mindset:

STEP 1: Imagine yourself as a DFA.

Rules:

1) Can only scan the input once, from left to right.

2) Can only remember "constant" amount of info.

cannot change
based on input length

STEP 2: Formally define the DFA.

STEP 1: Imagine yourself as a DFA.

How would you solve the union of regular languages?
Example:

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M

L1 = strings with even
number of 1’s

L2 = strings with length
divisible by 3

How would you solve the union of regular languages?

Input: 1 0 1 0 0 1

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M

Thread 1:
Thread 2:

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M
Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M
Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

qo
p1

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M
Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

qo qo
p1 p2

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M
Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

qo qo qe
p1 p2 p0

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M
Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

qo qo qe qe
p1 p2 p0 p1

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M
Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

qo qo qe qe qe
p1 p2 p0 p1 p2

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M
Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

qo qo qe qe qe qo
p1 p2 p0 p1 p2 p0

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M

Decision: Accept

Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

qo qo qe qe qe qo
p1 p2 p0 p1 p2 p0

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M
Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

qo qo qe qe qe qo
p1 p2 p0 p1 p2 p0

1. Are we scanning the input only once?

How would you solve the union of regular languages?

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M
Input: 1 0 1 0 0 1

Thread 1:
Thread 2:

qe
p0

qo qo qe qe qe qo
p1 p2 p0 p1 p2 p0

2. Do we need to remember more than
 constant amount of information?

How would you solve the union of regular languages?

Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

0, 1 0, 1

0, 1

p0 p1 p2

M′

qeven

qodd

1 1

0

0

M

How would you solve the union of regular languages?

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

0

?

How would you solve the union of regular languages?

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

0

How would you solve the union of regular languages?
Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

0

?

1

How would you solve the union of regular languages?
Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

0

1

How would you solve the union of regular languages?
Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

0

1

0 ?

How would you solve the union of regular languages?
Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

0

1

0

How would you solve the union of regular languages?
Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

How would you solve the union of regular languages?

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

0

1

0

?
1

Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

0

1

0

1

How would you solve the union of regular languages?
Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

0

1

0

1

0

0

1

1

0

0

How would you solve the union of regular languages?
Main Idea: Construct a single DFA that
keeps track of both and at once.M M′

STEP 2: Formally define the DFA.

Formally defining the union construction
Let be a DFA solving .M = (Q, Σ, δ, q0, F) L1

Let be a DFA solving M′ = (Q′ , Σ, δ′ , q′ 0, F′) L2 .
We construct a DFA solving :M′ ′ = (Q′ ′ , Σ, δ′ ′ , q′ ′ 0, F′ ′) L1 ∪ L2

- Q′ ′ = Q × Q′ = {(q, q′) : q ∈ Q, q′ ∈ Q′ }
- ,δ′ ′ : Q′ ′ × Σ → Q′ ′

δ′ ′ ((q, q′), σ) = (δ(q, σ), δ′ (q′ , σ))
- q′ ′ 0 = (q0, q′ 0)
- F′ ′ = {(q, q′) : q ∈ F or q′ ∈ F′ }

It remains to show that . L(M′ ′) = L1 ∪ L2

: …L(M′ ′) ⊆ L1 ∪ L2 : …L1 ∪ L2 ⊆ L(M′ ′)

δ′ ′ : (Q × Q′) × Σ → (Q × Q′)
for , , q ∈ Q q′ ∈ Q′ σ ∈ Σ :

Regular languages are closed under intersection

Proof: Follows from the following 3 facts.

- Regular languages are closed under complementation.

- Regular languages are closed under union.

Corollary: If and are regular,
then so is the intersection

L1 ⊆ Σ* L2 ⊆ Σ*
L1 ∩ L2 .

- .L1 ∩ L2 = L1 ∪ L2

Regular languages are closed under intersection

Let be a DFA solving .M = (Q, Σ, δ, q0, F) L1

Let be a DFA solving M′ = (Q′ , Σ, δ′ , q′ 0, F′) L2 .
We construct a DFA solving :M′ ′ = (Q′ ′ , Σ, δ′ ′ , q′ ′ 0, F′ ′) L1 ∪ L2

- Q′ ′ = Q × Q′ = {(q, q′) : q ∈ Q, q′ ∈ Q′ }
- ,δ′ ′ : Q′ ′ × Σ → Q′ ′

δ′ ′ ((q, q′), σ) =
- q′ ′ 0 = (q0, q′ 0)
- F′ ′ = {(q, q′) : q ∈ F or q′ ∈ F′ }

δ′ ′ : (Q × Q′) × Σ → (Q × Q′)
for , , q ∈ Q q′ ∈ Q′ σ ∈ Σ :

AND

(δ(q, σ), δ′ (q′ , σ))

More closure properties

Closed under union:
 regular regular.L1, L2 ⟹ L1 ∪ L2

Closed under concatenation:
 regular regular.L1, L2 ⟹ L1L2

Closed under star:
 regular regular.L ⟹ L*

Simple languages vs regular languages

What is the relationship between
simple languages and regular languages??

simple regular⊆

simple regular=
In fact:

Simple languages vs regular languages

Theorem: Can define regular languages recursively
as follows:

- is regular.∅
- For every , is regular.a ∈ Σ {a}
- , regular regular.L1 L2 ⟹ L1 ∪ L2

- , regular regular.L1 L2 ⟹ L1 ⋅ L2

- regular regular.L ⟹ L*

Closed under concatenation

Theorem: If and are regular,
then so is the concatenation .

L1 ⊆ Σ* L2 ⊆ Σ*
L1L2

L1L2 = {uv : u ∈ L1, v ∈ L2}

 iff there is an index such thatw ∈ L1L2 i

w1…wi ∈ L1 .wi+1…wn ∈ L2and

The Mindset:

STEP 1: Imagine yourself as a DFA.

Rules:

1) Can only scan the input once, from left to right.

2) Can only remember "constant" amount of info.

cannot change
based on input length

STEP 2: Formally define the DFA.

STEP 1: Imagine yourself as a DFA.

Given , we need to decide if we can writew ∈ Σ*
 such that accepts and accepts .w = uv M u M′ v

Problem: Don't know where ends, begins.u v
When do you stop simulating and start simulating ?M M′

0

1

0

1

1
0
1
0

0

1

q0

q1

q2

q3

q4

0
1 0 1

1
q02

q01

q00

0

M
M′

w1 w2 w3 w4 w5 w6 w7 w8 w9

0 0 1 1 0 0 1 0 0
w10

1

q0 q1 q1
q00 q02 q02 q02 q01 q02 q02 q01

q3

0

1

0

1

1
0
1
0

0

1

q0

q1

q2

q3

q4

0
1 0 1

1
q02

q01

q00

0

Suppose God tells you ends at .u w3

thread: a simulation of and then that corresponds to M M′

breaking up input as where .w uv u ∈ L1

M
M′

0

1

0

1

1
0
1
0

0

1

q0

q1

q2

q3

q4

0
1 0 1

1
q02

q01

q00

0

thread: a simulation of and then that corresponds to M M′

breaking up input as where .w uv u ∈ L1

M
M′

 iff a thread ending in an accepting state of .w ∈ L1L2 ∃ M′

w1 w2 w3 w4 w5 w6 w7 w8 w9

0 0 1 1 0 0 1 0 0
w10 w11

1 1

q0 q1 q1 q2

q02

q1

q02

q01

q1

q02

q01

q01

q1

q02

q02

q02

q2

q00

q00

q00

q02

q00thread1

q00thread2

q00thread3

q00thread4

q3 q4

q02

q3

q01

q00

q3

q01

q01

q01

0

1

0

1

1
0
1
0

0

1

q0

q1

q2

q3

q4

0
1 0 1

1
q02

q01

q00

0

automatic
teleportation

M
M′

w1 w2 w3 w4 w5 w6 w7 w8 w9

0 0 1 1 0 0 1 0 0
w10 w11

1 1

q0 q1 q1 q3 q2 q4 q1 q3 q1 q1 q3 q2

q00 q02 q02 q02 q01 q02 q02 q01 q00

q00 q01 q00 q01

q00 q02

q00 q01 q02 q01 q00

q02 q01 q00

thread1

thread2

thread3

thread4

automatic
teleportation

0

1

0

1

1
0
1
0

0

1

q0

q1

q2

q3

q4

0
1 0 1

1
q02

q01

q00

0

M
M′

w1 w2 w3 w4 w5 w6 w7 w8 w9

0 0 1 1 0 0 1 0 0
w10 w11

1 1

q0 q1 q1 q3 q2 q4 q1 q3 q1 q1 q3 q2

q00 q02 q02 q02 q01 q02 q02 q01 q00

q00 q01 q00 q01

q00 q02

q00 q01 q02 q01 q00

q02 q01 q00

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

At any point, need to remember:
- an element of Q
- a subset of Q′

(an element of)𝒫(Q′)

constant amount of
 information!

STEP 2: Formally define the DFA.

M = (Q, Σ, δ, q0, F) M′ = (Q′ , Σ, δ′ , q′ 0, F′)

Q′ ′ =

δ′ ′ :

q′ ′ 0 =

F′ ′ =

Great Exercise

Q × 𝒫(Q′)

 : {(q, S) S ∩ F′ ≠ ∅} S ∈ 𝒫(Q′), q ∈ Q,

 : = {(q, S) S ∈ 𝒫(Q′)} q ∈ Q,

Next Chapter

