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Quick review



Q = {q0, q1, q2, q3}
Σ = {0,1}
δ : Q × Σ → Q
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 is the start stateq0

F = {q1, q2}
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M = (Q, Σ, δ, q0, F)



 = the set of strings that DFA  accepts.L(M) M

DFA  solves the language . M L(M)
decides
computes

Definition:  A language  is called regular if  
there is some DFA solving .

L
L



All languages
𝒫(Σ*)

?

...

Regular languages

L = {110,101}

L = {0,1}* \ {110,101}

L = {x ∈ {0,1}* : x starts and ends with same bit}

L = {x ∈ {0,1}* : |x |  is divisible by 2 or 3}

L = {x ∈ {0,1}* : x contains the substring 110}

L = {x ∈ {0,1}* : 10 and 01 occur equally often in x}

L = {ϵ,110,110110,110110110,…}



All languages
𝒫(Σ*)

{0n1n : n 2 N}

...

{02
n

: n 2 N}

...

Regular languages

L = {110,101}

L = {0,1}* \ {110,101}

L = {x ∈ {0,1}* : x starts and ends with same bit}

L = {x ∈ {0,1}* : |x |  is divisible by 2 or 3}

L = {x ∈ {0,1}* : x contains the substring 110}

L = {x ∈ {0,1}* : 10 and 01 occur equally often in x}

L = {ϵ,110,110110,110110110,…}



An Application



An application of DFAs

Naïve algorithm:
 steps.∼ nk

Input:      
Output:   

S = acbbabcbbcbaaabaaccccacbaaabcbcbaab
w = acba

string  of length ;   string  of length .S n w k
True if  occurs in ;   False otherwise.w S

Can we do better??



An application of DFAs

DFA solution:

We want to know if  .S ∈ Lw = Σ* ⋅ {w} ⋅ Σ*

Input:      
Output:   

string  of length ;   string  of length .S n w k
True if  occurs in ;   False otherwise.w S

 is regular! Lw

Feed  to .S Mw  steps.∼ n

Time to build ?Mw Simple algorithm:  steps.∼ k3

Knuth-Morris-Pratt 1977:  steps.∼ k

So there is a DFA  computing it.Mw



Closure properties of regular languages



If  is regular, then there is a DFAL

solving .L

M = (Q, Σ, δ, q0, F)

Regular languages are closed under complementation

Proof:

So  is regular.L

Proposition:  If  is regular, then so is .L ⊆ Σ* L = Σ*\L

Then the DFA

solves .  L

M′ = (Q, Σ, δ, q0, Q\F)



Regular languages are closed under union

Theorem:  If  and  are regular, 
then so is the union 

L1 ⊆ Σ* L2 ⊆ Σ*
L1 ∪ L2 .

Proof: Let  be a DFA solving M = (Q, Σ, δ, q0, F) L1

and let  be a DFA solving M′ = (Q′ , Σ, δ′ , q′ 0, F′ ) L2 .
We construct a DFA  solvingM′ ′ = (Q′ ′ , Σ, δ′ ′ , q′ ′ 0, F′ ′ )

 as follows:L1 ∪ L2

...



The Mindset:

STEP 1:   Imagine yourself as a DFA.

Rules:

1) Can only scan the input once, from left to right.

2) Can only remember "constant" amount of info.

cannot change  
based on input length

STEP 2:   Formally define the DFA.



STEP 1:   Imagine yourself as a DFA.



How would you solve the union of regular languages? 
Example:

0, 1 0, 1

0, 1

p0 p1 p2

M′ 

qeven

qodd

1 1

0

0

M

L1 = strings with even 
number of 1’s

L2 = strings with length 
divisible by 3



How would you solve the union of regular languages? 

Input:               1     0     1     0     0     1

0, 1 0, 1

0, 1

p0 p1 p2

M′ 

qeven

qodd

1 1

0

0

M

Thread 1:
Thread 2:
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Thread 1:
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How would you solve the union of regular languages? 

0, 1 0, 1

0, 1

p0 p1 p2

M′ 

qeven
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Input:               1     0     1     0     0     1
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Thread 2:

qe
p0

qo qo qe qe qe qo
p1 p2 p0 p1 p2 p0



How would you solve the union of regular languages? 

0, 1 0, 1

0, 1

p0 p1 p2

M′ 

qeven

qodd

1 1

0

0

M

Decision: Accept

Input:               1     0     1     0     0     1

Thread 1:
Thread 2:

qe
p0

qo qo qe qe qe qo
p1 p2 p0 p1 p2 p0



How would you solve the union of regular languages? 

0, 1 0, 1

0, 1

p0 p1 p2

M′ 

qeven

qodd

1 1

0

0

M
Input:               1     0     1     0     0     1

Thread 1:
Thread 2:

qe
p0

qo qo qe qe qe qo
p1 p2 p0 p1 p2 p0

1. Are we scanning the input only once?



How would you solve the union of regular languages? 

0, 1 0, 1

0, 1

p0 p1 p2

M′ 

qeven

qodd

1 1

0

0

M
Input:               1     0     1     0     0     1

Thread 1:
Thread 2:

qe
p0

qo qo qe qe qe qo
p1 p2 p0 p1 p2 p0

2. Do we need to remember more than 
    constant amount of information?



How would you solve the union of regular languages? 

Main Idea:  Construct a single DFA that  
keeps track of both  and  at once.M M′ 

0, 1 0, 1

0, 1

p0 p1 p2

M′ 

qeven

qodd

1 1

0

0

M



How would you solve the union of regular languages? 

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

Main Idea:  Construct a single DFA that  
keeps track of both  and  at once.M M′ 



p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1

Main Idea:  Construct a single DFA that  
keeps track of both  and  at once.M M′ 

0
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How would you solve the union of regular languages? 
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qodd

qeven qevenp1

qodd qoddp0 p2p1

0

How would you solve the union of regular languages? 
Main Idea:  Construct a single DFA that  
keeps track of both  and  at once.M M′ 
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How would you solve the union of regular languages? 
Main Idea:  Construct a single DFA that  
keeps track of both  and  at once.M M′ 
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How would you solve the union of regular languages? 
Main Idea:  Construct a single DFA that  
keeps track of both  and  at once.M M′ 
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How would you solve the union of regular languages? 
Main Idea:  Construct a single DFA that  
keeps track of both  and  at once.M M′ 
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Main Idea:  Construct a single DFA that  
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How would you solve the union of regular languages? 

p0 p2qeven

qodd

qeven qevenp1

qodd qoddp0 p2p1
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Main Idea:  Construct a single DFA that  
keeps track of both  and  at once.M M′ 
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keeps track of both  and  at once.M M′ 
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qeven qevenp1

qodd qoddp0 p2p1
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How would you solve the union of regular languages? 
Main Idea:  Construct a single DFA that  
keeps track of both  and  at once.M M′ 



STEP 2:   Formally define the DFA.



Formally defining the union construction
Let  be a DFA solving .M = (Q, Σ, δ, q0, F) L1

Let  be a DFA solving M′ = (Q′ , Σ, δ′ , q′ 0, F′ ) L2 .
We construct a DFA  solving :M′ ′ = (Q′ ′ , Σ, δ′ ′ , q′ ′ 0, F′ ′ ) L1 ∪ L2

- Q′ ′ = Q × Q′ = {(q, q′ ) : q ∈ Q, q′ ∈ Q′ }
- ,δ′ ′ : Q′ ′ × Σ → Q′ ′ 

δ′ ′ ((q, q′ ), σ) = (δ(q, σ), δ′ (q′ , σ))
- q′ ′ 0 = (q0, q′ 0)
- F′ ′ = {(q, q′ ) : q ∈ F  or  q′ ∈ F′ }

It remains to show that . L(M′ ′ ) = L1 ∪ L2

:     …L(M′ ′ ) ⊆ L1 ∪ L2 :    …L1 ∪ L2 ⊆ L(M′ ′ )

δ′ ′ : (Q × Q′ ) × Σ → (Q × Q′ )
for  ,  ,  q ∈ Q q′ ∈ Q′ σ ∈ Σ :



Regular languages are closed under intersection

Proof: Follows from the following 3 facts.

- Regular languages are closed under complementation.

- Regular languages are closed under union.

Corollary:  If  and  are regular, 
then so is the intersection 

L1 ⊆ Σ* L2 ⊆ Σ*
L1 ∩ L2 .

- .L1 ∩ L2 = L1 ∪ L2



Regular languages are closed under intersection

Let  be a DFA solving .M = (Q, Σ, δ, q0, F) L1

Let  be a DFA solving M′ = (Q′ , Σ, δ′ , q′ 0, F′ ) L2 .
We construct a DFA  solving :M′ ′ = (Q′ ′ , Σ, δ′ ′ , q′ ′ 0, F′ ′ ) L1 ∪ L2

- Q′ ′ = Q × Q′ = {(q, q′ ) : q ∈ Q, q′ ∈ Q′ }
- ,δ′ ′ : Q′ ′ × Σ → Q′ ′ 

δ′ ′ ((q, q′ ), σ) =
- q′ ′ 0 = (q0, q′ 0)
- F′ ′ = {(q, q′ ) : q ∈ F  or  q′ ∈ F′ }

δ′ ′ : (Q × Q′ ) × Σ → (Q × Q′ )
for  ,  ,  q ∈ Q q′ ∈ Q′ σ ∈ Σ :

AND

(δ(q, σ), δ′ (q′ , σ))



More closure properties

Closed under union:
 regular     regular.L1, L2 ⟹ L1 ∪ L2

Closed under concatenation:
 regular     regular.L1, L2 ⟹ L1L2

Closed under star:
 regular     regular.L ⟹ L*



Simple languages  vs  regular languages

What is the relationship between  
simple languages and regular languages??

simple    regular⊆

simple    regular=
In fact:



Simple languages  vs  regular languages

Theorem: Can define regular languages recursively  
as follows:

-  is regular.∅
- For every ,  is regular.a ∈ Σ {a}
- ,  regular   regular.L1 L2 ⟹ L1 ∪ L2

- ,  regular   regular.L1 L2 ⟹ L1 ⋅ L2

-  regular   regular.L ⟹ L*



Closed under concatenation

Theorem: If  and  are regular,  
then so is the concatenation .

L1 ⊆ Σ* L2 ⊆ Σ*
L1L2

L1L2 = {uv : u ∈ L1, v ∈ L2}

  iff  there is an index  such thatw ∈ L1L2 i

w1…wi ∈ L1 .wi+1…wn ∈ L2and



The Mindset:

STEP 1:   Imagine yourself as a DFA.

Rules:

1) Can only scan the input once, from left to right.

2) Can only remember "constant" amount of info.

cannot change  
based on input length

STEP 2:   Formally define the DFA.



STEP 1:   Imagine yourself as a DFA.



Given , we need to decide if we can writew ∈ Σ*
  such that   accepts  and  accepts .w = uv M u M′ v

Problem: Don't know where  ends,  begins.u v
When do you stop simulating  and start simulating ?M M′ 
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Suppose God tells you  ends at .u w3

thread:  a simulation of  and then  that corresponds to M M′ 

breaking up input  as  where .w uv u ∈ L1

M
M′ 
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thread:  a simulation of  and then  that corresponds to M M′ 

breaking up input  as  where .w uv u ∈ L1

M
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  iff   a thread ending in an accepting state of .w ∈ L1L2 ∃ M′ 
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1 1
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✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

At any point, need to remember:
- an element of  Q
- a subset of  Q′ 

(an element of )𝒫(Q′ )

constant amount of  
  information!



STEP 2:   Formally define the DFA.



M = (Q, Σ, δ, q0, F) M′ = (Q′ , Σ, δ′ , q′ 0, F′ )

Q′ ′ =

δ′ ′ :

q′ ′ 0 =

F′ ′ =

Great Exercise

Q × 𝒫(Q′ )

 : {(q, S)   S ∩ F′ ≠ ∅} S ∈ 𝒫(Q′ ), q ∈ Q,

 : = {(q, S)  S ∈ 𝒫(Q′ )} q ∈ Q,



Next Chapter


