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The Finite vs The Infinite



Completed: Formally define computation/algorithm.

Next: Understand limits of computation and human reasoning.

All languages

TM-decidable languages

isPrime

0n1n

.

..

Regular languages

EvenLength
...

?



Completed: Formally define computation/algorithm.

Next: Understand limits of computation and human reasoning.
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The Finite vs The Infinite



Infinity in Mathematics Pre-Cantor:
"Infinity is nothing more than a figure of speech which        
  helps us talk about limits.  
  The notion of a completed infinity doesn't belong in  
  mathematics."

- Carl Friedrich Gauss

Cantor:
Treat infinite sets as first-class citizens!



Reaction to Cantor's ideas at the time

Most of the ideas of Cantorian set theory 
should be banished from mathematics 

once and for all!

- Henri Poincaré



Reaction to Cantor's ideas at the time

I don’t know what predominates  
in Cantor’s theory - 

philosophy or theology.

- Leopold Kronecker



Reaction to Cantor's ideas at the time

Scientific charlatan.

- Leopold Kronecker



Reaction to Cantor's ideas at the time

Corrupter of youth.

- Leopold Kronecker



Reaction to Cantor's ideas at the time

Wrong.

- Ludwig Wittgenstein



Reaction to Cantor's ideas at the time

Utter non-sense.

- Ludwig Wittgenstein



Reaction to Cantor's ideas at the time

Laughable.

- Ludwig Wittgenstein



Reaction to Cantor's ideas at the time

No one should expel us from the Paradise 
that Cantor has created.

- David Hilbert



Reaction to Cantor's ideas at the time

If one person can see it as a paradise, 
why should not another see it as a joke?

- Ludwig Wittgenstein





Galileo (1564–1642)

Best known publication:  
Dialogue Concerning the Two Chief World Systems

His final magnum opus (1638):
Discourses and Mathematical Demonstrations  

Relating to Two New Sciences



The three characters

Sagredo:
"Intelligent layperson".  He's neutral. 
Named after one of Galileo's friends.

Salviati:
The "smart one".  (Obvious Galileo stand-in.) 

Named after one of Galileo's friends.

Simplicio:
The "idiot".   
Modeled after two of Galileo's enemies.



Salviati

I take it for granted that you know which of  
the numbers are squares and which are not.

Simplicio

I am quite aware that a squared number is one which 
results from the multiplication of another number by itself; 

thus 4, 9, etc., are squared numbers which come from 
multiplying 2, 3, etc., by themselves.

Very well. [… defines ‘square root’ and ‘non-square’…]  
If I assert that all numbers, including both squares and 
non-squares, are more than the squares alone, I shall 
speak the truth, shall I not?

Most certainly.

S = {0, 1, 4, 9, 16, …}

ℕ = {0, 1, 2, 3, 4, …}

• |S | < |ℕ |



Salviati

If I should ask further how many squares there are,  
one might reply truly that there are as many as  
the corresponding number of square-roots,  
since every square has its own square-root  
and every square-root its own square…

Simplicio

Precisely so.

But if I inquire how many square-roots there are,  
it cannot be denied that there are as many as the numbers 
because every number is the square-root of some square.

This being granted, we must say that there are  
as many squares as there are numbers because  
they are just as numerous as their square-roots,  
and all the numbers are square-roots. 

Yet at the outset we said that there are 
many more numbers than squares.

S = {0, 1, 4, 9, 16, …}

ℕ = {0, 1, 2, 3, 4, …}

• |S | < |ℕ |

• |S | = |SR |

SR = {0, 1, 2, 3, 4, …}

= |ℕ |



    Neither is the number of squares less than  
    the totality of all the numbers, …

Salviati

Sagredo: What then must one conclude under these circumstances?

Cantor 
(1845–1918)

Good, good…

… nor the latter greater than the former, …
Good, good…

… and finally, the attributes "equal,"  
    "greater," and "less," are not applicable    
    to infinite, but only to finite, quantities.

OOOHHHH!  So close!   
You were almost there, Galileo! 

Why not say that they are indeed equal?

S = {0, 1, 4, 9, 16, …}

ℕ = {0, 1, 2, 3, 4, …}

• |S | < |ℕ |

• |S | = |SR |

SR = {0, 1, 2, 3, 4, …}

= |ℕ |



Great Idea #1:

Great Idea #2:

Use injections/surjections/bijections to compare sets.

Diagonalization proof technique.



• Part 1:  Comparing finite sets.

Great Idea #1:

Use injections/surjections/bijections to compare sets.



Comparing sizes of finite sets
X = {apple, orange, banana, melon}

Y = {200, 300, 400, 500}

What does  mean?|X | = |Y |

apple

orange

banana

melon

1

2

3

4

500

200

300

400



Comparing sizes of finite sets
X = {apple, orange, banana, melon}

Y = {200, 300, 400, 500}

What does  mean?|X | = |Y |

apple

orange

banana

melon

500

200

300

400

  iff there is a 1-to-1 correspondence 
                       between  and .
|X | = |Y |

X Y



Comparing sizes of finite sets
X = {apple, orange, banana}

Y = {200, 300, 400, 500}

What does  mean?|X | ≤ |Y |
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Comparing sizes of finite sets
X = {apple, orange, banana}

Y = {200, 300, 400, 500}

What does  mean?|X | ≤ |Y |

apple

orange

banana

500

200

300

400

  iff there is an injection 
                       from  to .
|X | ≤ |Y |

X Y



Comparing sizes of finite sets
X = {apple, orange, banana}

Y = {200, 300, 400, 500}

What does  mean?|X | ≤ |Y |

apple

orange

banana

500

200

300

400

  iff there is a surjection 
                       from  to .
|X | ≤ |Y |

Y X



3 types of functions
injective,  1-to-1

surjective,  onto

bijective,  1-to-1 correspondence

 is injective if 
.

f : X → Y
x ≠ x′ ⟹ f(x) ≠ f(x′ )

 is surjective if 
  s.t.  . 

f : X → Y
∀y ∈ Y, ∃x ∈ X f(x) = y

 is bijective if 
 is injective and surjective.

f : X → Y
f

X Y

X Y

X Y

X ↪ Y

X ↠ Y

X ↔ Y



3 types of functions
X Y

X Y

X Y

X ↪ Y

X ↠ Y

X ↔ Y

|X | ≤ |Y |

|X | ≥ |Y |

|X | = |Y |



What does  mean?|X | < |Y |

not |X | ≥ |Y |

 
but not 
|X | ≤ |Y |

|X | = |Y |

there is no surjection from  to .X Y

there is no injection from  to .Y X

there is an injection from  to , 
but no bijection between  and .

X Y
X Y

?



• Part 1:  Comparing finite sets.

Great Idea #1:

Use injections/surjections/bijections to compare sets.

• Part 2:  Comparing infinite sets.



The previous definitions  
are the "right" definitions 

for infinite sets as well!



Comparing infinite sets
|X | ≤ |Y |

|X | ≥ |Y |

|X | = |Y |

X ↪ Y

X ↠ Y

X ↔ Y

Note 1:  We are not defining what  means.|X |

Note 2:  This is just a way to attach meaning to 
               expressions like " " for infinite sets.|X | = |Y |

Note 3:  Cantor's statements/proofs are just about  
               injections, surjections, bijections.



Sanity checks
•   iff  |X | ≤ |Y | |Y | ≥ |X |

•   iff    and  |X | = |Y | |X | ≤ |Y | |X | ≥ |Y |

•  If    and  ,  then  |X | ≤ |Y | |Y | ≤ |Z | |X | ≤ |Z |

  iff  X ↪ Y Y ↠ X

  iff    and  X ↔ Y X ↪ Y X ↠ Y

If    and  ,  then  X ↪ Y Y ↪ Z X ↪ Z



Examples of bijections

List the integers so that eventually every number is 

f(n) = (−1)n+1⌈ n
2 ⌉

?|ℕ | = |ℤ |

ℕ = {0, 1, 2, 3, 4, …}

ℤ = {…, -3, -2, -1, 0, 1, 2, 3, …}

0, 1, -1, 2, -2, 3, -3, 4, -4, …

0 1 2 3 4 5 6 7 8 …



Heuristic for showing |A | = |ℕ |

List elements of  such thatA
every element appears in the list, eventually.

Show  is "listable":A

:   ℤ 0, 1, -1, 2, -2, 3, -3, …

:   ℕ 0 1 2 3 4 5 6 ...

:   ℤ 0, 1, 2, 3, 4, 5, 6, …

Careful:



Examples of bijections

f(n) = n2

?|ℕ | = |𝕊 |

ℕ = {0, 1, 2, 3, 4, …}

𝕊 = {0, 1, 4, 9, 16, …}

listable:

0, 1, 4, 9, 16, …



Examples of bijections

f(n) = n'th prime number

?|ℕ | = |ℙ |

ℕ = {0, 1, 2, 3, 4, …}

ℙ = {2, 3, 5, 7, 11, …}

listable:

2, 3, 5, 7, 11, …



Examples of bijections

(0, 0)
……

...

...

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(�1, 1)

(�1, 0)

(�1,�1)

(0,�1)

(1,�1)

(2,�1)

(2, 0)

(2, 1)

(2, 2)

(1, 2)

(0, 2)
...

?|ℕ | = |ℤ × ℤ |
listable



Examples of bijections

the set of all finite-length binary words.{0,1}* =

?|ℕ | = |{0,1}* |

ϵ

0, 1
00, 01, 10, 11
000, 001, 010, 011, 100, 101, 110, 111
…

listable:



Examples of bijections

the set of all finite-length words over .Σ* = Σ

?|ℕ | = |Σ* |

length 0 string

length 1 strings

length 2 strings

length 3 strings
...

listable:



The picture so far

Finite sets

Countable sets

|ℕ | = |ℤ | = |ℤ × ℤ | = |Σ* |
= |Primes | = |Squares |

How should we define this set?

(i) sets  such that .S |S | ≤ |ℕ |

(ii) sets  such that .S |S | ≤ |Σ* |

"listable", "orderable", "countable" 

encodable



Can we list them in the order they appear on the line?

Is  Countable?ℚ

So  is encodable/countable.ℚ

0 1 2 3 4-1-2-3-4

NO! 

Let .Σ = {0, 1, 2, …, 9, /, − }

Every rational number can be described 
by a finite-length string over .Σ

e.g.     −210/251



Is  Countable?ℚ[x]
the set of polynomials with rational coefficients.ℚ[x] =

e.g. x3 � 1

4
x2 + 6x� 22

7

Let .Σ = {0, 1,…, 9, x, + , − , * , /, ̂}

Every polynomial can be described by 
a finite-length string over .Σ

e.g.     x ̂3 − 1/4x ̂2 + 6x − 22/7

So  is encodable/countable.ℚ[x]



The picture so far

Finite sets

Countable sets

|ℕ | = |ℤ | = |ℤ × ℤ | = |ℚ | = |Σ* |
= |Primes | = |Squares |

?
?ℝ?{0,1}∞



Great Idea #1:

Great Idea #2:

Use injections/surjections/bijections to compare sets.

Diagonalization proof technique.



Great Idea #2:
Diagonalization proof technique.



Motivation
Given a set of objects , can we construct an object not in ?ℱ ℱ?

𝒰

ℱ
?



Motivation



Motivation

All languages

Decidable languages

isPrime

0n1n

.

..

Regular languages

EvenLength
...

?



Motivation

EXP

NP?

P?

•
•

•

?



Motivation

Decidable in  timen3

Decidable in  timen2?

Decidable in  timen?

•
•

•

?



Motivation

All true statements

Provable statements?



Motivation

𝒰

ℱ
?

Given a set of objects , can we construct an object not in ?ℱ ℱ?



Motivation

Goal: Find a general technique applicable to various .ℱ

Given a set of objects , can we construct an object not in ?ℱ ℱ?



Motivation

Goal: Find a general technique applicable to various .ℱ

Given a set of functions , can we construct a function not in ?ℱ ℱ?

Most objects can be conveniently viewed as a function.N



Most objects can be conveniently viewed as a function.N

S ⊆ X fS : X → {0, 1}⟷

fℙ(n) = {1 if n is prime

0 otherwise

fS(x) = {1 if x ∈ S
0 otherwise

Sets as functions

ℙ ⊆ ℕ fℙ : ℕ → {0, 1}⟷e.g.

Numbers as functions

r ∈ [0, 1] fr : ℕ → {0, 1}⟷ r = 0. f(0) f(1) f(2) f(3) …

e.g. r = 0.110110… ⟷ fr(0) = 1, fr(1) = 1, fr(2) = 0,

fr(3) = 1, fr(4) = 1, fr(5) = 0, …



• Part 1:  Diagonalization with finite .ℱ

Great Idea #2:
Diagonalization proof technique.



0 0 1 0

1 1 1 0

1 0 0 0

1 0 1 1

Given:
A set  of functions ℱ
f : X → {0,1}
Goal:
Construct a function  
different from each .

fD
f ∈ ℱ

How:
, pick an input , 

and make .
∀f ∈ ℱ x ∈ X

fD(x) ≠ f(x)

Condition needed:
|X | ≥ |ℱ | fD 1 0 1 0

Fu
nc

tio
ns

ℱ

f1

f2

f3

f4

Inputs X
x1 x2 x3 x4

Let  be a set of functions  .ℱ f : X → {0,1}
If , can construct    not in .|X | ≥ |ℱ | fD : X → {0,1} ℱ

Careful:
, pick a different .∀f ∈ ℱ x



Diagonalization Lemma:
Let  be a set of functions  .ℱ f : X → {0,1}
If ,  we can construct    not in .|X | ≥ |ℱ | fD : X → {0,1} ℱ

Corollary:
Let  be the set of all functions  .ℱ f : X → {0,1}
Then |X | < |ℱ | .= 2|X|

:   
  • pick a unique , 
  • let  .

∀f ∈ ℱ
xf ∈ X

fD(xf) ≠ f(xf)
f xf

ℱ Xϕ



• Part 1:  Diagonalization with finite sets.

Great Idea #2:
Diagonalization proof technique.

• Part 2:  Diagonalization with infinite sets.



Diagonalization Lemma:
Let  be a set of functions  .ℱ f : X → {0,1}
If ,  we can construct    not in .|X | ≥ |ℱ | fD : X → {0,1} ℱ



Diagonalization Lemma:
Let  be any set. Let  be a any set of functions  .X ℱ f : X → {0,1}
If ,  we can construct    not in .|X | ≥ |ℱ | fD : X → {0,1} ℱ

,  let  .∀f ∈ ℱ fD(xf) ≠ f(xf)

ℱ

f

X

xf

ϕ

...
...

 = set of all functions  .F(X) f : X → {0,1}Definition:

For every set ,  X |X | < |F(X) | .Corollary (Cantor's Theorem):



Cantor's Theorem

Cantor's Theorem:  For every set ,  X |X | < |F(X) | .

Corollary 1: ,   i.e.   is uncountable.|ℕ | < |F(ℕ) | F(ℕ)

|ℕ | < |F(ℕ) |

an infinity of infinities...

< |F(F(ℕ)) | < |F(F(F(ℕ))) | < ⋯

Corollary 2: ,   i.e.   is uncountable.|Σ* | < |F(Σ*) | F(Σ*)

 = set of all functions  F(X) f : X → {0,1}



Finite sets

Countable sets

|ℕ | = |ℤ | = |ℤ × ℤ | = |ℚ | = |Σ* |
= |Primes | = |Squares |

|F(ℕ) | = |F(ℤ) | = |F(ℚ) | = |F(Σ*) |

F(F(ℕ))

F(F(F(ℕ)))

...



An Interesting Question

Is there a set  such that S

?|ℕ | < |S | < |F(ℕ) |

Continuum Hypothesis:
No such set exists.

(Hilbert's 1st problem)



Diagonalization Lemma:

This is called "diagonalization against ".ℱN

! Diagonalization produces an explicit   
outside .

fD
ℱ

You can pretty much view anything as a function.N

N The range need not be .{0,1}

Let  be any set. Let  be a any set of functions  .X ℱ f : X → {0,1}
If ,  we can construct    not in .|X | ≥ |ℱ | fD : X → {0,1} ℱ



Limits of Computation:  
The Finite vs The Infinite



Finite Countably infinite Uncountable

finite 
set

vs
infinite 

set

finite 
descriptions 
of elements

infinite 
descriptions 
of elements

vs



All decision problems  f : Σ* → {0,1}
F(Σ*)

Decidable decision problems

?

uncountable
by Cantor's theorem

countable
because encodable

Encoding of a decidable decision problem   :f   ⟨M⟩ (where TM  solves  )M f



Decidable

All decision problems  f : Σ* → {0,1}
F(Σ*)



So are we doomed??

What is an explicit undecidable decision problem??

 = set of all (semi)-decidable  .ℱ f : Σ* → {0,1}
. |ℱ | = |Σ* |

Diagonalizing against  spits out undecidable  . ℱ fD



The story continues next lecture…

Don't forget about me!


