CS251

Great Ideas
in
Theoretical
Computer Science

Limits of Computation 2: The Finite and Undecidable

Poll: Which ones are decidable?

 $ACCEPTS_{TM} = \{ \langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ s.t. } x \in L(M) \}$

SELF-ACCEPTS_{TM} = $\{\langle M \rangle : M \text{ is a TM s.t. } \langle M \rangle \in L(M)\}$

 $\text{HALTS}_{\text{TM}} = \{ \langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ s.t. } M(x) \text{ halts} \}$

 $SAT_{TM} = \{\langle M \rangle : M \text{ is a TM s.t. } M \text{ accepts some string} \}$

 $NEQ_{TM} = \{ \langle M_1, M_2 \rangle : M_1, M_2 \text{ are TMs s.t. } L(M_1) \neq L(M_2) \}$

Can we write an autograder?

NEQ_{TM} = { $\langle M_1, M_2 \rangle : M_1, M_2 \text{ are TMs s.t. } L(M_1) \neq L(M_2)$ }

Is there an algorithm (TM) that solves NEQ? (is NEQ decidable?)

Can we write an autograder?

 $ACCEPTS_{TM} = \{ \langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ such that } x \in L(M) \}$

Poll: Which ones are decidable?

ACCEPTS = $\{\langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ s.t. } x \in L(M) \}$

SELF-ACCEPTS = $\{\langle M \rangle : M \text{ is a TM s.t. } \langle M \rangle \in L(M) \}$

HALTS = $\{\langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ s.t. } M(x) \text{ halts} \}$

SAT = $\{\langle M \rangle : M \text{ is a TM s.t. } M \text{ accepts some string} \}$

NEQ = $\{\langle M_1, M_2 \rangle : M_1, M_2 \text{ are TMs s.t. } L(M_1) \neq L(M_2) \}$

Last time in 251

			Inpu	ts X	
		\boldsymbol{x}_1	\mathcal{X}_2	x_3	\mathcal{X}_4
	f_1	0	0	1	0
ctions	f_2	1	1	1	0
Functions	f_3	1	0	0	0
	f_4	1	0	1	1
	f_{D}	1	0	1	0

Given:

A set \mathcal{F} of functions $f: X \to \{0,1\}.$

Goal:

Construct a function f_D different from each $f \in \mathcal{F}$.

How:

 $\forall f \in \mathcal{F}$, pick a unique input $x \in X$, and make $f_D(x) \neq f(x)$.

Condition needed:

$$|X| \ge |\mathcal{F}|$$

Let X be any set and let \mathscr{F} be any set of functions $f: X \to \{0,1\}$.

If $|X| \ge |\mathcal{F}|$, we can construct $f_D: X \to \{0,1\}$ not in \mathcal{F} .

	$\phi(f_1)$	$\phi(f_2)$	$\phi(f_3)$	$\phi(f_4)$	• • •
f_1	0	0	1	0	• • •
f_2	1	1	1	0	• • •
f_3	1	0	0	0	• • •
f_4	1	0	1	1	• • •
•	• •	• •	• •	• •	
f_{D}	1	0	1	0	• • •

Let X be any set and let \mathcal{F} be any set of functions $f: X \to \{0,1\}$.

If $|X| \ge |\mathcal{F}|$, we can construct $f_D: X \to \{0,1\}$ not in \mathcal{F} .

- This is called "diagonalization against \mathcal{F} ".
- Diagonalization produces an <u>explicit</u> f_D outside \mathcal{F} .
- You can pretty much view anything as a function.
- The range need not be $\{0,1\}$.

Let X be any set and let \mathscr{F} be any set of functions $f: X \to Y$, where $|Y| \ge 2$. If $|X| \ge |\mathscr{F}|$, we can construct $f_D: X \to Y$ not in \mathscr{F} .

- This is called "diagonalization against \mathcal{F} ".
- Diagonalization produces an <u>explicit</u> f_D outside \mathcal{F} .
- You can pretty much view anything as a function.
- The range need not be $\{0,1\}$.

Let X be any set and let \mathscr{F} be any set of functions $f: X \to Y$, where $|Y| \ge 2$. If $|X| \ge |\mathscr{F}|$, we can construct $f_D: X \to Y$ not in \mathscr{F} .

So
$$|X| \ge |\mathcal{F}| \implies \exists f_D : X \to Y \text{ not in } \mathcal{F}.$$

i.e.
$$\mathbb{Z}f_D: X \to Y$$
 not in $\mathscr{F} \implies |X| < |\mathscr{F}|$.

Definition: $F(X) = \text{set of } \underline{\textbf{all}} \text{ functions } f: X \to \{0,1\}.$

Corollary (Cantor's Theorem): For every set X, |X| < |F(X)|.

Corollary: $|\mathbb{N}| < |\mathbf{F}(\mathbb{N})|$, so $\mathbf{F}(\mathbb{N})$ is uncountable.

Corollary: $|\Sigma^*| < |F(\Sigma^*)|$, so $F(\Sigma^*)$ is uncountable.

$$\mathbf{F}(\mathbf{F}(\mathbf{F}(\mathbb{N})))$$

$$\mathbf{F}(\mathbf{F}(\mathbb{N}))$$

$$|\mathbf{F}(\mathbb{N})| = |\mathbf{F}(\mathbb{Z})| = |\mathbf{F}(\mathbb{Q})| = |\mathbf{F}(\Sigma^*)|$$

Countable sets = Encodable sets

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Z} \times \mathbb{Z}| = |\mathbb{Q}| = |\Sigma^*|$$

= $|\text{Primes}| = |\text{Squares}|$

Finite sets

Encoding of a **decidable** decision problem $f: \langle M \rangle$ (where TM M solves f)

All decision problems $f: \Sigma^* \to \{0,1\}$

Decidable

All decision problems $f: \Sigma^* \to \{0,1\}$ Too many problems/languages! Most cannot be even communicated! (beyond mathematical analysis)

Decidable

(can be mathematically communicated/analysed)

Finitely describable problems

Is there an **explicit** undecidable problem?

Limits of Computation:
The Finite and Undecidable

Great Idea:

Diagonalizing against a set produces an <u>explicit object</u> not in that set.

	$\phi(f_1)$	$\phi(f_2)$	$\phi(f_3)$	$\phi(f_4)$	• • •
f_1	0	0	1	0	• • •
f_2	1	1	1	0	• • •
f_3	1	0	0	0	• • •
f_4	1	0	1	1	• • •
•	• •	•	•	•	
f_{D}	1	0	1	0	• • •

• $\mathscr{F} = \text{set of all Turing machines } M \pmod{\text{mapping } \Sigma^* \text{ to } \{0,1,\infty\}$).

ullet Need: $|\Sigma^*| \geq |\mathcal{F}|$

	$\phi(f_1)$	$\phi(f_2)$	$\phi(f_3)$	$\phi(f_4)$	• • •
f_1	0	0	1	0	• • •
f_1 f_2	1	1	1	0	• • •
f_3	1	0	0	0	• • •
f_4	1	0	1	1	• • •
• •	1	• •	• •	•	
f_{D}	1	0	1	0	• • •

• $\mathscr{F} = \text{set of all Turing machines } M \pmod{\text{mapping } \Sigma^* \text{ to } \{0,1,\infty\}$).

• Need: $|\Sigma^*| \geq |\mathcal{F}|$

	$\phi(f_1)$	$\phi(f_2)$	$\phi(f_3)$	$\phi(f_4)$	• • •
f_1	0	0	1	0	• • •
f_2	1	1	1	0	• • •
f_3	1	0	0	0	• • •
f_4	1	0	1	1	• • •
•	•	•	•	•	
f_{D}	1	0	1	0	• • •

• $\mathscr{F} = \text{set of all Turing machines } M \pmod{\text{mapping } \Sigma^* \text{ to } \{0,1,\infty\}$).

• Need: $|\Sigma^*| \geq |\mathcal{F}|$

	$\phi(M_1)$	$\phi(M_2)$	$\phi(M_3)$	$\phi(M_4)$	•••
M_1	0	∞	1	0	• • •
M_2	1	1	1	∞	• • •
M_3	1	0	∞	0	• • •
M_4	1	0	1	∞	• • •
•	•	•	1	•	
f_{D}	1	0	1	1	• • •

• $\mathscr{F} = \text{set of all Turing machines } M \pmod{\text{mapping } \Sigma^* \text{ to } \{0,1,\infty\}$).

ullet Need: $|\Sigma^*| \geq |\mathcal{F}|$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •
M_1	0	∞	1	0	• • •
M_1 M_2	1	1	1	∞	• • •
M_3	1	0	∞	0	• • •
M_4	1	0	1	∞	• • •
•	•	•	1	•	
f_{D}	1	0	1	1	• • •

Conclusions:

- For every TM M_i , $f_D(\langle M_i \rangle) \neq M_i(\langle M_i \rangle)$. f_D is undecidable!
- f_D corresponds to $L = \{ \langle M \rangle : M(\langle M \rangle) \in \{0, \infty\} \} = \{ \langle M \rangle : \langle M \rangle \not\in L(M) \}$

Theorem (1st Explicit Undecidable Language)

Theorem: SELF-ACCEPTS is undecidable.

Theorem 2: SELF-ACCEPTS is undecidable

SELF-ACCEPTS = $\{\langle M \rangle : M \text{ is a TM s.t. } \langle M \rangle \in L(M) \}$

Proof: AFSOC SELF-ACCEPTS is decidable.

So \exists decider M_{SA} that decides SELF-ACCEPTS.

Then we can construct $M_{\overline{SA}}$ deciding $\overline{\text{SELF-ACCEPTS}}$:

 $\mathbf{def}\,M_{\overline{\mathbf{SA}}}(\langle M\rangle):$

return not $M_{SA}(\langle M \rangle)$

But SELF-ACCEPTS is undecidable. Contradiction.

Theorem 3: ACCEPTS is undecidable

ACCEPTS = $\{\langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ s.t. } x \in L(M)\}$

Proof: AFSOC ACCEPTS is decidable.

So \exists decider M_A that decides ACCEPTS.

Then we can construct M_{SA} deciding SELF-ACCEPTS:

```
 \begin{split} \operatorname{def} M_{\operatorname{SA}}(\langle M \rangle) : \\ \operatorname{return} M_{\operatorname{A}}(\langle M, \langle M \rangle \rangle) \end{split}
```

But SELF-ACCEPTS is undecidable. Contradiction.

Theorem 4 (Turing): HALTS is undecidable

HALTS = $\{\langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ s.t. } M(x) \text{ halts} \}$

Proof: AFSOC HALTS is decidable. So \exists decider $M_{\rm H}$ that decides HALTS.

Then we can construct M_A deciding ACCEPTS:

```
\operatorname{def} M_{\mathcal{A}}(\langle M, x \rangle):
    run M_{\mathbf{H}}(\langle M, x \rangle)
    if it rejects: reject
    else:
        run M(x)
        if it accepts: accept
        if it rejects: reject
```

Some consequences

- Program verification is hard!
- No guaranteed autograder program.
- Consider the following program:

```
def fermat():

t = 3

while (True):

for n in range(3, t+1):

for x in range(1, t+1):

for y in range(1, t+1):

for z in range(1, t+1):

if (x^{**}n + y^{**}n == z^{**}n): return (x, y, z, n)

t += 1
```

Does this program halt?

Some consequences

- Consider the following program (written in MAPLE): numberToTest := 2; flag := 1;while flag = 1 doflag := 0;numberToTest := numberToTest + 2; for p from 2 to numberToTest do if IsPrime(p) and IsPrime(numberToTest-p) then flag := 1;break; Goldbach end if end for Conjecture end do

Does this program halt?

Some consequences

- Reductions: show new problems are undecidable.

e.g. Entscheidungsproblem, Hilbert's 10th problem

- By Physical Church-Turing Thesis we are proving the computational limits of our universe.

We write $A \leq B$ if you can do the following:

- assume $\exists M_B$ solving B,
- construct M_A solving A (using M_B as a subroutine).

We write $A \leq B$ if you can do the following:

- assume $\exists M_B$ solving B,
- construct M_A solving A (using M_B as a subroutine).

We write $A \leq B$ if you can do the following:

- assume $\exists M_B$ solving B,
- construct M_A solving A (using M_B as a subroutine).

from God import fooB

```
def fooA(input):
    # some code that solves problem A
    # that makes calls to function fooB when needed
    fooB(some_other_input)
```

To show $A \leq B$: Give me the code for fooA.

We write $A \leq B$ if you can do the following:

- assume $\exists M_B$ solving B,
- construct M_A solving A (using M_B as a subroutine).

 $B ext{ decidable} \implies A ext{ decidable}$

A undecidable $\Longrightarrow B$ undecidable

 $A \leq B$: A is no harder than B (with respect to decidability).

Expand the landscape of undecidable languages:

ACCEPTS is undecidable.

If ACCEPTS $\leq B$, then B is undecidable.

Proved: ACCEPTS ≤ HALTS.

If HALTS $\leq B$, then B is undecidable.

•

Theorem 5: HALTS ≤ SAT

HALTS = $\{\langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ s.t. } M(x) \text{ halts} \}$ SAT = $\{\langle M \rangle : M \text{ is a TM s.t. } L(M) \neq \emptyset \}$

Theorem 5: HALTS ≤ SAT

M_{HALTS}

$$M(x)$$
 halts $\longrightarrow L(M') \neq \emptyset$
 $M(x)$ loops $\longrightarrow L(M') = \emptyset$

```
\begin{array}{c} \operatorname{def} M_{\text{HALTS}}(\langle M, x \rangle): \\ \\ \operatorname{def} M'(y): \\ \\ \operatorname{run} M(x) \\ \\ \operatorname{accept} \\ \\ \end{array}
\operatorname{return} M_{\text{SAT}}(\langle M' \rangle)
```

Theorem 6: SAT ≤ NEQ

SAT = $\{\langle M \rangle : M \text{ is a TM s.t. } L(M) \neq \emptyset \}$

NEQ = $\{\langle M_1, M_2 \rangle : M_1, M_2 \text{ are TMs s.t. } L(M_1) \neq L(M_2) \}$

Theorem 6: SAT ≤ NEQ

$$L(M_2) = \emptyset$$

Summary

Diagonalize against the set of all decidable languages:

SELF-ACCEPTS is undecidable.

SELF-ACCEPTS ≤ SELF-ACCEPTS ≤ ACCEPTS

 \leq HALTS \leq SAT \leq NEQ