Great Ideas

in
Theoretical

Computer Science

Limits of Computation 2:
The Finite and Undecidable

Poll: Which ones are decidable?

ACCEPTSTM = {{M,x) : MisaTMandx € 2 * sit.x € L(M)}
SELF-ACCEPTST\M = {(M) : MisaTM s.t. (M) € L(M)}
HALTSTM = {(M,x) : MisaTM and x € £ * s.t. M(x) halts}
SATTM = {(M) : M is aTM s.t. M accepts some string }

NEQTM — {<M1,M2> : Ml’ M2 are TMs s.t. L(Ml) ?é L(Mz)}

Can we write an autograder?

NEQtTn = (M, M,) : M, M, are TMs s.t. L(M,) # L(M,)}

Correct @
- e
V —
ersion - E ~(™ True
isPrime.py return True on
. —> OFr
exactly same inputs?

-\) False
Student e
submission —

1sPrime.py

o s there an algorithm (TM) that solves NEQ?
(is NEQ decidable?)

Can we write an autograder?

ACCEPTSTM = {(M,x) : MisaTM and x € X* such that x € L(M)}

i

|
— T>() True
isPrime.py returns True

when input is 2517

_\) False
251

Poll: Which ones are decidable?

ACCEPTS = {{M,x) : MisaTMand x € X*st.x € L(M)}
SELF-ACCEPTS = {(M) : MisaTM ss.t. (M) € L(M)}
HALTS = {{(M,x) : MisaTM and x € 2* s.t. M(x) halts}
SAT = {{M) : M is a TM s.t. M accepts some string }

NEQ = {{(M{,M,) : M;, M, are TMs s.t. L(M,) # L(M,)}

Last time in 251

Inputs X
X A X3 X4
fi | |o] 0 1 0
S ho| 1 0
:
D)
L £ 1 0 0] 0
F
fi 1 0 1
1 1 0 1 0

GGiven:
A set & of functions

f:X—-{0,1}.

Goal:

Construct a function f
different from each fe .

How:

Vi e &,

pick a unique input x € X,
and make f,(x) # f(x).

Condition needed:
| X| > | F]

Diagonalization Lemma:

Let X be any set and let & be any set of functions f: X — {0,1}.

t | X| > |F|, we can construct f,: X = {0,1} notin &.

¢(f1) 9() ¢(f3) P(fs) -
7 -¢ sl fo] o 1 o
f = X Hl 10
| il 1 0o [of o
. il 10

Diagonalization Lemma:

Let X be any set and let & be any set of functions f: X — {0,1}.

t | X| > |F|, we can construct f,: X = {0,1} notin &.

0 This is called "diagonalization against F".

o Diagonalization produces an explicit f;,
outside F.

0 You can pretty much view anything as a function.

0 The range need not be {0,1}.

Diagonalization Lemma:

Let X be any set and let & be any set of functions f: X — Y, where | Y| > 2.

t | X| > |F|, we can construct f,,: X = Y notin .

0 This is called "diagonalization against F".

o Diagonalization produces an explicit f;,
outside F.

0 You can pretty much view anything as a function.

0 The range need not be {0,1}.

Diagonalization Lemma:

Let X be any set and let & be any set of functions f: X — Y, where | Y| > 2.

t | X| > |F|, we can construct f,,: X = Y notin .

So |X|>|F| = 3f,:X— Y notin &.

.e. ,ZfD:X—>Ynotin3‘7 — | X| < |F].

Definition: F(X) = set of all functions f: X — {0,1}.

Corollary (Cantor's Theorem): ForeverysetX, |X| < |F(X)].

Corollary: |N| < |F(N)|, so F(N) is uncountable.

Corollary: |Z*| < |F(Z*)]|, so F(X*) is uncountable.

-~

F(FF(N)))

~

-~

F(F(N))

~

-~

[FN) | =F(Z)| = F@Q)| = |F(&¥)]

Countable sets = Encodable sets

~

COINI=1Z]=1ZxZ|= Q| = 5%

= | Primes| = | Squares|

Finite sets

o

NS

2

All decision problems f: 2* — {0,1}
uncountable .
by Cantor's theorem F(2*)

Decidable decision problems

countable
because encodable

Encoding of a decidable decision problem f: (M) (where TM M solves f)

All decision problems f: 2* — {0,1}
F(2*)

Decidable

All decision problems f: 2* — {0,1}
F(2*)

Too many problems/languages!

Most cannot be even communicated!

(beyond mathematical analysis)

Decidable
@,

(can be mathematically communicated/analysed)

Finitely describable problems

Decidable problems

e s there an explicit undecidable problem?

Limits of Computation:
The Finite and Undecidable

Great ldea:

Diagonalizing against a set produces an explicit object

not in that set.

Diagonalization against the set of all TMs:

F

L
N
P
—
]

Af

X

(1) ¢(h) @(fz) P(fs)

Diagonalization against the set of all TMs:

= set of all Turing machines M (mapping X* to {0,1,00}).

e Need: |2*| > | F| (

¢(f1) 9() ¢(f3) P(fs) -
7 -(ﬁ sl fo] o 1 o
f = X f|] 1 O
| il 1 o [o] o
. il 10

Diagonalization against the set of all TMs:

= set of all Turing machines M (mapping X* to {0,1,00}).

e Need: |2*| > | F| (

¢(f1) 9() ¢(f3) P(fs) -
7 -(ﬁ ** slf0] o 1 o
M = Xy H| 1 1 0
| il 1 o [o] o
. il 10

Diagonalization against the set of all TMs:

= set of all Turing machines M (mapping X* to {0,1,00}).

e Need: |2*| > | F| (

¢M,) p(M,) p(M3) p(M,) -+
4 = M, @ 00 1 O
M = Xy M,| 1 1 00
. My| 1 0O 0
- M, 1 0

Diagonalization against the set of all TMs:

= set of all Turing machines M (mapping X* to {0,1,00}).

e Need: |2*| > | F| (

(M) (My) (M3) (M)
4 = M, @ 00 1 O
M = (M) M,| 1 1 00
. Myl 1 0 0

- M, 1 0

(M) (M) (M3)
7 = M, @ 00 1 O
M = (M) M,| 1 1 00
] M| 1 0 0
- 177% I N

O 0o @ @ -

Conclusions:

e Forevery TM M, f,({M))) # M.({(M,)). fp is undecidable!

® f,correspondsto L= {(M): M((M)) € {0,00}} = {{(M) : (M) & L(M)}

Theorem (1st Explicit Undecidable Language)

p
Theorem: SELF-ACCEPTS is undecidable. '

Theorem 2: SELF-ACCEPTS is undecidable

SELF-ACCEPTS = {{(M) : MisaTM ss.t. (M) € L(M)}

Proof: AFSOC SELF-ACCEPTS is decidable.

So 1 decider Mg that decides SELF-ACCEPTS.
Then we can construct Mgz deciding SELF-ACCEPTS:

def MgA ((M)):
return not Mg ({M))

But SELF-ACCEPTS is undecidable. Contradiction.

Theorem 3: ACCEPTS is undecidable

ACCEPTS = {{(M,x) :MisaTMandx € X * st.x € L(M)}

Proof: AFSOC ACCEPTS is decidable.
So J decider M 5 that decides ACCEPTS.

Then we can construct Mg deciding SELF-ACCEPTS:

def MSA«M)):
return M ((M, (M)))

But SELF-ACCEPTS is undecidable. Contradiction.

Theorem 4 (Turing): HALTS is undecidable

HALTS = {{M,x) : MisaTM and x € X * s.t. M(x) halts}

Proof: AFSOC HALTS is decidable. So 3 decider M that decides HALTS.
Then we can construct M 5 deciding ACCEPTS:

def M A ({M, x)):
run My({(M, x))
if 1t rejects: reject
else:
run M(x)
1f 1t accepts: accept
if 1t rejects: reject

Some consequences

- Program veritication is hard!
- No guaranteed autograder program.

- Consider the following program:

def fermat():
t=3
while (True):
for n in range(3, t+1): N\
for x in range(1, t+1): |
for y In range(1, t+1): SIMON SINGH

for z in range(1, t+1):
if (x**n + y**n == z**n): return (x, y, z, n)
t+=1

Does this program halt?

Some consequences

- Consider the following program (written in MAPLE):

numberToTest ;= 2;
flag :=1;
while flag = 1 do
flag :=0;
numberToTest := numberToTest + 2;
for p from 2 to numberToTest do
if IsPrime(p) and IsPrime(numberToTest—p) then

flag :=1;
break;
end if Goldbach
end for Conjecture

end do

Does this program halt?

Some consequences

- Reductions: show new problems are undecidable.

e.g. Entscheidungsproblem, Hilbert's 10th problem

- By Physical Church-Turing Thesis

we are proving the computational limits of our universe.

Revisiting Reductions

We write A < B if you can do the following:
- assume 3 My solving B,

- construct M, solving A (using Mj as a subroutine).

Revisiting Reductions

We write A < B if you can do the following:
- assume 3 My solving B,

- construct M, solving A (using Mj as a subroutine).

def fooB(input):
assume some code exists helper
that solves problem B function
def fooA(input):

some code that solves problem A
that makes calls to function fooB when needed
fooB(some_other_input)

Revisiting Reductions

We write A < B if you can do the following:
- assume 3 My solving B,

- construct M, solving A (using Mj as a subroutine).

from God import fooB

def fooA(input):
some code that solves problem A
that makes calls to function fooB when needed
fooB(some_other_input)

To show A < B: Give me the code for fooA.

Revisiting Reductions

We write A < B if you can do the following:
- assume 3 My solving B,

- construct M, solving A (using Mj as a subroutine).

B decidable = A decidable
A undecidable = B undecidable

A < B: A is no harder than B (with respect to decidability).

Revisiting Reductions

Expand the landscape of undecidable languages:

ACCEPTS is undecidable.

It ACCEPTS < B, then B is undecidable.

Proved: ACCEPTS < HALTS.

It HALTS < B, then B is undecidable.

Theorem 5;: HALTS < SAT

HALTS = {{M,x) : MisaTM and x € X * s.t. M(x) halts}
SAT = {(M) : MisaTM s.t. L(M) # &}

MHALTS

(M,)

MHALTS

.a) —p 00— M|

Theorem 5;: HALTS < SAT

MYALTS
M(x) halts — L(M') +# @
M. MY—| M
) —p T et M) loops — LI = &

def MALTS((M, X));

def M'(y):

run M(x)
accept

return MqaT((M'))

Theorem 6: SAT < NEQ

SAT = {(M) : MisaTM s.t. LIM) # &}
NEQ = {{(M,,M,) : M, M, are TMs s.t. L(M,) # L(M,)}

MSAT

MSAT

Theorem 6: SAT < NEQ

Mg AT
LM) #@ — L(M)) # L(M,)
Wi M
(M) - LM)=g —> LM, =LM,)
def MSAT«M)):
def M,(x):

LM,) = @

reject

return MNEQ(<M’ M,))

Summary

Diagonalize against the set of all decidable languages:

SELF-ACCEPTS is undecidable.

SELF-ACCEPTS

IN

SELF-ACCEPTS < ACCEPTS

< HALTS

IN

SAT < NEQ

