CS251**Great Ideas** in Theoretical Computer Science

Limits of Human Reasoning

Last Time

Diagonalize against the set of all decidable languages: $\overline{\text{SELF-ACCEPTS}}$ ($\overline{\text{SA}}$) is undecidable.

$\overline{\text{SELF-ACCEPTS}} \leq \text{SELF-ACCEPTS} \leq \text{ACCEPTS}$ \leq HALTS \leq SAT \leq NEQ

Undecidable problems not involving Turing Machines

Hilbert's 10th Problem

Determining if a given multivariate polynomial with integral coefficients has an integer root.

e.g. $5xy^2z + 8yz^3 + 100x^{99}$

Undecidable!

Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Decidable! Does it have a **real** root? Proved in 1951 by Tarski.

Does it have a *rational* root? **No one knows!**

Post's Correspondence Problem (PCP)

Input: A finite collection of "dominoes" having strings written on each half.

Output: Accept if it is possible to match the strings.

Undecidable! Proved in 1946 by Post.

Input: A finite collection of "Wang Tiles" (squares) with colors on the edges.

Output: Accept iff it is possible to make an infinite grid from copies of the given squares, where touching sides must color-match.

Undecidable! Proved in 1966 by Berger.

Mortal Matrices

Input: Two 21x21 matrices of integers U and V.

Output: Accept iff it is possible to multiply U and V (multiple times in any order) to get to the 0 matrix.

Undecidable! Proved in 2007 by Halava, Harju, Hirvensalo.

Completed:

Formally define computation.

Understand the limits of computation.

Next:

Understand (logical) human reasoning and its limits.

Good Old Regular Mathematics (GORM)

GORM: Good Old Regular Mathematics

Real World

Something of interest

Abstract World

Mathematical Model

GORM: Good Old Regular Mathematics

Applications

Real World

Gambling

Abstract World

Probability Theory

GORM: Good Old Regular Mathematics

- **Abstract World**
 - Plane Geometry

FORM: Formalization of GORM

Real World

Mathematical Reasoning (GORM)

- **Abstract World**
 - Mathematical Model

FORM: Formalization of GORM **Real World Abstract World** Mathematical Statement Mathematical Axiom Model **Deduction Rule** Proof Truth

Elements of Mathematical Reasoning (Informal)

- **Statement:** A well-formed sentence with a truth value.
- **Axiom:** An obviously true statement.
- **Deduction Rule:** A rule allowing you to derive new true statements from other true statements.
- **Proof:** A chain of deductions, starting from axioms, and ending at the statement.

knowledge \equiv proof

Hope: truth \equiv provable

Part 1:

Essential components of FORM

Part 2:

Proving interesting properties of FORM (and therefore GORM)

Part 1:

Essential components of FORM

GORM is a computational process

Statements and proofs are represented as finite-length strings.

GORM is a computational process

Statements and proofs are represented as finite-length strings.

FORM: Formalization of GORM

FORM is a mathematical model (formalization) of GORM such that:

- For every statement S in GORM with a truth value, there is a precise representation of S in FORM (denoted by $\langle S \rangle$).
- For every argument P in GORM,
- there is a precise representation of P in FORM (denoted by $\langle P \rangle$). - FORM specifies a decider TM V (called a verifier) such that $V(\langle S \rangle, \langle P \rangle)$ accepts iff P is a proof of S.
 - S is provable means $\exists w \in \Sigma^*$ such that $V(\langle S \rangle, w)$ accepts.

From Verifier to Prover

Let V be the verifier. We can build a prover from it:

def Prover($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return w

def isProvable($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

The Church-Turing Thesis of Mathematics

GORM-to-ZFC Thesis

<u>Church-Turing Thesis (GORA-to-TM Thesis):</u>

TM is the right model for an algorithm. Every algorithm compiles down to a TM.

GORM-to-ZFC Thesis:

The Zermelo–Fraenkel-Choice (ZFC) axiomatic system is the right model for GORM. Every GORM-statement compiles down to a ZFC-statement. Every GORM-proof compiles down to a ZFC-proof.

Part 1:

Essential components of FORM

Part 2:

Proving interesting properties of FORM (and therefore GORM)

Part 2:

Proving interesting properties of FORM (and therefore GORM)

Properties you want from FORM

1. Consistency

For every statement S, at most one of S or $\neg S$ is provable. Not consistent \implies Any statement is provable.

2. Soundness

If S is provable, then S is true. (false statements are not provable) Soundness \implies Consistency.

3. Completeness

For every statement S, at least one of S or $\neg S$ is provable.

Want to prove T. AFSOC $\neg T$. Derive (prove) S. Derive (prove) $\neg S$. Contradiction.

Properties you want from an axiomatic system

- 1. Consistency
 - For every statement S, at most one of S or $\neg S$ is provable.
- 2. Soundness

If S is provable, then S is true. (false statements are not provable)

3. Completeness

For every statement S, at least one of S or $\neg S$ is provable.

Sound & Complete \implies truth \equiv provable.

Hilbert's Program

- Formalize GORM. (Create FORM)
- Prove FORM is **complete**.
- Prove FORM is **consistent**.

Puzzle: Why not prove **soundness**?

Is Hilbert's Program achievable?

finite VS infinite

limits of computation

Contrapositive:

"Satisfactory" FORM

limits of human reasoning

Compute the uncomputable

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

The Setting

The FORM we are using: **ZFC axiomatic system**.

GORM-to-ZFC Thesis:

For every GORM-statement and GORM-proof, there is a corresponding ZFC-statement and ZFC-proof.

<u>Terminology:</u>

- there is a proof of S in ZFC S is provable: S is **independent**: Neither S nor $\neg S$ is provable
- **Incompleteness:** 3 an independent S

```
 \begin{array}{c} \mathsf{Accept} \\ \to & \mathsf{or} \\ \mathsf{Reject} \end{array}  (is P a proof of S?)
```


Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

Oth Incompleteness Theorem

Observation: We can't hope to reason about everything!

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

Can ZFC be both **sound** & **complete**?

Assume it is. Then **truth** \equiv **provable**.

We can then compute/decide any truth!!!

def Resolve($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

Can ZFC be both **sound** & **complete**?

Assume it is. Then **truth** \equiv **provable**.

We can then compute/decide any truth!!!

def isTrue($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

def $M_{\text{HALTS}}(\langle M, x \rangle)$: **return isTrue**($\langle M(x) \text{ halts} \rangle$)

Can ZFC be both **sound** & **complete**?

Assume it is. Then **truth** \equiv **provable**.

We can then compute/decide any truth!!!

def isTrue($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

def $M_{SAT}(\langle M \rangle)$: **return isTrue**($\langle " \exists x \text{ such that } M(x) \text{ accepts}" \rangle$)

Can ZFC be both **sound** & **complete**?

Assume it is. Then **truth** \equiv **provable**.

We can then compute/decide any truth!!!

def isTrue($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

def $M_{\overline{SA}}(\langle M \rangle)$: # complement of SELF-ACCEPTS **return isTrue**(("*M* does not self-accept"))

def Resolve($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

Theorem:

ZFC cannot be both sound and complete. I.e. if ZFC is sound, then it is **incomplete**.

def $M_{\overline{SA}}(\langle M \rangle)$: return Resolve($\langle "M$ does not self-accept" \rangle)

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

Assume ZFC is sound. What is an explicit statement S independent of ZFC?

def Resolve($\langle S \rangle$): for k = 1, 2, 3, ...**for** every string *w* of length *k*: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

def $M_{\overline{SA}}(\langle M \rangle)$:

return Resolve(("*M* does not self-accept"))

Observations:

- $M_{\overline{SA}}$ is not a correct decider for \overline{SA} .
- So for some input (for some M), $M_{\overline{SA}}$ doesn't give the right answer.
- So $\exists M$ such that Resolve($\langle M does not self-accept \rangle$) doesn't give the right answer.
- So $\exists M$ such that "*M* does not self-accept" is independent!

Assume ZFC is sound. What is an explicit statement S independent of ZFC?

def Resolve($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

def $M_{\overline{SA}}(\langle M \rangle)$:

return Resolve($\langle M does not self-accept \rangle$)

Assume ZFC is sound. What is an explicit statement S independent of ZFC?

def Resolve($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

def $M_{\overline{SA}}(\langle M \rangle)$:

return Resolve($\langle M does not self-accept \rangle$)

Assume ZFC is sound. What is an explicit statement S independent of ZFC?

def Resolve($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

def $M_{\overline{SA}}(\langle M \rangle)$:

return Resolve($\langle M does not self-accept \rangle$)

Conclusions:

- $M_{\overline{SA}}$ does not give the right answer when the input is $\langle M_{\overline{SA}} \rangle$.
- $I = "M_{\overline{SA}}$ does not self-accept" is independent of ZFC.

def Resolve($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

Definition: $I = "M_{\overline{SA}}$ does not self-accept"

Theorem: If ZFC is sound, " $M_{\overline{SA}}(\langle M_{\overline{SA}} \rangle)$ does not accept" is **independent** of ZFC.

def $M_{\overline{SA}}(\langle M \rangle)$: **return** Resolve(("*M* does not self-accept"))

def Resolve($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

Definition: $I = "M_{\overline{SA}}$ does not self-accept"

Theorem: ZFC is sound $\rightarrow I$ is **independent** of ZFC.

Theorem: ZFC is sound $\rightarrow I$.

Can we replace "ZFC sound" with "ZFC consistent"?

def $M_{\overline{SA}}(\langle M \rangle)$: **return** Resolve(("*M* does not self-accept"))

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

1st Incompleteness Theorem (Consistency version)

def Resolve($\langle S \rangle$): for k = 1, 2, 3, ...for every string w of length k: if $V(\langle S \rangle, w)$ accepts: return True if $V(\langle \neg S \rangle, w)$ accepts: return False

Definition: $I = "M_{\overline{SA}}$ does not self-accept"

Theorem: ZFC is consistent $\rightarrow I$ is **independent** of ZFC.

Theorem: ZFC is consistent $\rightarrow I$.

def $M_{\overline{SA}}(\langle M \rangle)$: **return** Resolve(("*M* does not self-accept"))

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

2nd Incompleteness Theorem

Reductions for provability

Reductions for provability

Proving S reduces to proving T means: " $T \rightarrow S$ " is provable. If S reduces to T then: T provable \implies S provable

2nd Incompleteness Theorem

Proving S reduces to proving T means: " $T \rightarrow S$ " is provable. If S reduces to T then: T provable \implies S provable

 $I = "M_{\overline{SA}}$ does not self-accept" is unprovable.

So any T, such that I reduces to T, is unprovable.

Theorem: ZFC is consistent $\rightarrow I$.

By GORM-to-ZFC Thesis

 \exists GORM-proof of theorem \longrightarrow \exists ZFC-proof of theorem

- $S \text{ unprovable } \implies T \text{ unprovable}$

2nd Incompleteness Theorem

Theorem:

If ZFC is consistent, "ZFC is consistent" is not provable.

Hilbert's Program

- Formalize GORM. (Create FORM)
- Prove FORM is **complete**.
- Prove FORM is **consistent**.

Hilbert's Program

- Formalize GORM. (Create FORM)
- Prove FORM is **complete**.
- Prove FORM is **consistent**.
- Prove isProvable is **decidable**.

isProvable is undecidable!

That's all for PART 1 of CS251

- Foundations of math.
- Birth of computer science.
- Formalizing computation.
- Uncountability \rightarrow Uncomputability \rightarrow Unprovability.

What is next?

Yes, the following (and many more) are uncomputable:

What about:

These are computable! But are they **practically computable**?

What is next?

We enter the land of complexity theory and the famous "P vs NP".