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Last Time

Diagonalize against the set of all decidable languages:
 ( ) is undecidable.SELF-ACCEPTS SA

 SELF-ACCEPTS  ≤ SELF-ACCEPTS  ≤ ACCEPTS

 ≤ HALTS  ≤ SAT  ≤ NEQ



Undecidable problems  
not involving Turing Machines



Hilbert’s 10th Problem
Determining if a given multivariate polynomial with 
integral coefficients has an integer root.

e.g.

Does it have a real root? Decidable!

Does it have a rational root? No one knows!

5xy2z + 8yz3 + 100x99

Undecidable!
Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Proved in 1951 by Tarski.



Post's Correspondence Problem (PCP)
Input:  A finite collection of  "dominoes" 
            having strings written on each half.

a

ab

a

cabc c

bcc

Output:  Accept if it is possible to match the strings.

a

ab

a

cabcc

bcc

c

bcc abccabcc

abccabcc

Undecidable!
Proved in 1946 by Post.



Wang Tiles
Input:  A finite collection of  "Wang Tiles" (squares) 
            with colors on the edges.

Output:  Accept iff it is possible to make an infinite grid 
               from copies of the given squares, 
               where touching sides must color-match.

Undecidable!
Proved in 1966 by Berger.



Mortal Matrices
Input:  Two 21x21 matrices of integers  and .U V

Output:  Accept iff it is possible to multiply  and  
               (multiple times in any order) 
               to get to the 0 matrix.

U V

Undecidable!
Proved in 2007 by Halava, Harju, Hirvensalo.



All languages
𝒫(Σ*)

Finitely describable

HALTS
ACCEPTS

SAT NEQ

TM-decidable

ENTSCHEIDUNGSPROBLEM

PCP

WANG-TILES



Completed:

Next:
Understand (logical) human reasoning and its limits.

Formally define computation.

Understand the limits of computation.



Good Old Regular Mathematics 
(GORM)



GORM:  Good Old Regular Mathematics

Applications

Something of 
interest

Mathematical 
Model

New 
Knowledge

Real World Abstract World

logic



Applications

Gambling
Probability 

Theory

New 
Knowledge

Real World Abstract World

GORM:  Good Old Regular Mathematics



Applications

Farming
Plane  

Geometry

New 
Knowledge

Real World Abstract World

GORM:  Good Old Regular Mathematics



Applications

Mathematical 
Reasoning

Mathematical 
Model

logic

New 
Knowledge

Real World Abstract World

(GORM)

FORM:  Formalization of GORM



Mathematical 
Model

Real World Abstract World

Mathematical Statement
Axiom
Deduction Rule
Proof
Truth

FORM:  Formalization of GORM



Elements of Mathematical Reasoning  (Informal)

Statement:

Axiom:

Deduction Rule:

Proof:

A well-formed sentence with a truth value.

An obviously true statement.

A rule allowing you to derive new true statements 
from other true statements.

A chain of deductions, starting from axioms,  
and ending at the statement.

Hope:   truth  provable≡

knowledge  proof≡



Essential components of FORM 

Proving interesting properties of FORM 
(and therefore GORM)

Part 1:

Part 2:



Essential components of FORM 
Part 1:



GORM is a computational process

  (proof of , if it exists)P S    statement S
Prover

Accept 
or 

Reject

statement S

proof P Verifier

Statements and proofs are represented as finite-length strings.N

Want verification to be (efficiently) decidable.N



GORM is a computational process

    statement S
Provable?

Accept 
or 

Reject

Accept 
or 

Reject

statement S

proof P Verifier

Statements and proofs are represented as finite-length strings.N

Want verification to be (efficiently) decidable.N



FORM:  Formalization of GORM
FORM is a mathematical model (formalization) of GORM such that:

- For every statement  in GORM with a truth value, 
   there is a precise representation of  in FORM  (denoted by ).

S
S ⟨S⟩

- For every argument  in GORM, 
   there is a precise representation of  in FORM  (denoted by ).

P
P ⟨P⟩

- FORM specifies a decider TM   (called a verifier) such that 
    accepts iff  is a proof of .

V
V(⟨S⟩, ⟨P⟩) P S

 is provable means  such that  accepts.S ∃w ∈ Σ* V(⟨S⟩, w)



From Verifier to Prover

Let  be the verifier.  We can build a prover from it:V

def  Prover( ):      
   

⟨S⟩
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return V(⟨S⟩, w) w

def  isProvable( ):      
   

⟨S⟩
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

V(⟨S⟩, w)
V(⟨¬S⟩, w)



Is there an agreed upon FORM that we can work with??



The Church-Turing Thesis of Mathematics



GORM-to-ZFC Thesis

Church-Turing Thesis (GORA-to-TM Thesis):

TM is the right model for an algorithm.

GORM-to-ZFC Thesis:
The Zermelo–Fraenkel-Choice (ZFC) axiomatic system  
is the right model for GORM.

Every algorithm compiles down to a TM.

Every GORM-proof compiles down to a ZFC-proof.

Every GORM-statement compiles down to a ZFC-statement.



Essential components of FORM 

Proving interesting properties of FORM 
(and therefore GORM)

Part 1:

Part 2:



Proving interesting properties of FORM 
(and therefore GORM)

Part 2:



Properties you want from FORM
1. Consistency

2. Soundness

3. Completeness

For every statement , at most one of  or  is provable.S S ¬S

If  is provable, then  is true.S S

For every statement , at least one of  or  is provable.S S ¬S

Soundness    Consistency.⟹

Not consistent    Any statement is provable.⟹ Want to prove . 
AFSOC . 
Derive (prove) . 
Derive (prove) . 
Contradiction.

T
¬T

S
¬S

(false statements are not provable)



Properties you want from an axiomatic system
1. Consistency

2. Soundness

3. Completeness

For every statement , at most one of  or  is provable.S S ¬S

If  is provable, then  is true.S S

For every statement , at least one of  or  is provable.S S ¬S

(false statements are not provable)

Sound & Complete   ⟹N truth  provable.≡



Hilbert's Program

- Formalize GORM.  (Create FORM)

- Prove FORM is complete.

- Prove FORM is consistent.

Puzzle: Why not prove soundness?

Is Hilbert's Program achievable??



finite  
vs  

infinite

limits of 
computation

limits of 
human reasoning

"Satisfactory" FORM

Compute the uncomputable

Contrapositive:



0th Incompleteness Theorem

1st Incompleteness Theorem  (Soundness version #1)

1st Incompleteness Theorem  (Soundness version #2)

1st Incompleteness Theorem  (Consistency version)

2nd Incompleteness Theorem

The Plan



The Setting

 is provable:         S
 is independent:  S

there is a proof of  in ZFCS
Neither  nor  is provableS ¬S

Incompleteness:         an independent ∃ S

The FORM we are using:   ZFC axiomatic system.

GORM-to-ZFC Thesis:
For every GORM-statement and GORM-proof, 
there is a corresponding ZFC-statement and ZFC-proof.

Terminology:

Accept 
or 

Reject

(statement) S
P

Verifier
V

(is  a proof of ?)P S



0th Incompleteness Theorem

1st Incompleteness Theorem  (Soundness version #1)

1st Incompleteness Theorem  (Soundness version #2)

1st Incompleteness Theorem  (Consistency version)

2nd Incompleteness Theorem

The Plan



0th Incompleteness Theorem



The 0th Incompleteness Theorem

Finitely describable

Mathematical Concepts uncountable

countable

Observation:  We can't hope to reason about everything!



0th Incompleteness Theorem

1st Incompleteness Theorem  (Soundness version #1)

1st Incompleteness Theorem  (Soundness version #2)

1st Incompleteness Theorem  (Consistency version)

2nd Incompleteness Theorem

The Plan



1st Incompleteness Theorem  (Soundness version #1)



1st Incompleteness Theorem  (Soundness version #1)

Assume it is. 

We can then compute/decide any truth!!!

def  Resolve( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

Then truth  provable.≡

Can ZFC be both sound & complete??



1st Incompleteness Theorem  (Soundness version #1)

Assume it is. 

We can then compute/decide any truth!!!

def  isTrue( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

Then truth  provable.≡

Can ZFC be both sound & complete??

def  MHALTS(⟨M, x⟩) :
return isTrue( "  halts" )⟨ M(x) ⟩



1st Incompleteness Theorem  (Soundness version #1)

Assume it is. 

We can then compute/decide any truth!!!

def  isTrue( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

Then truth  provable.≡

Can ZFC be both sound & complete??

def  MSAT(⟨M⟩) :
return isTrue( "  such that  accepts" )⟨ ∃x M(x) ⟩



1st Incompleteness Theorem  (Soundness version #1)

Assume it is. 

We can then compute/decide any truth!!!

def  isTrue( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

Then truth  provable.≡

Can ZFC be both sound & complete??

def  MSA(⟨M⟩) :
return isTrue( "  does not self-accept" )⟨ M ⟩

# complement of SELF-ACCEPTS



1st Incompleteness Theorem  (Soundness version #1)
def  Resolve( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def  MSA(⟨M⟩) :
return Resolve( "  does not self-accept" )⟨ M ⟩

Theorem: 
ZFC cannot be both sound and complete.
I.e. if ZFC is sound, then it is incomplete.



0th Incompleteness Theorem

1st Incompleteness Theorem  (Soundness version #1)

1st Incompleteness Theorem  (Soundness version #2)

1st Incompleteness Theorem  (Consistency version)

2nd Incompleteness Theorem

The Plan



1st Incompleteness Theorem  (Soundness version #2)



1st Incompleteness Theorem  (Soundness version #2)
Assume ZFC is sound. What is an explicit 
statement  independent of ZFC?S?

def  Resolve( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def  MSA(⟨M⟩) :
return Resolve( "  does not self-accept" )⟨ M ⟩

Observations:
•  is not a correct decider for .MSA SA

• So  such that 
   Resolve( "  does not self-accept" )
   doesn't give the right answer.

∃M
⟨ M ⟩

• So for some input  (for some ),  
   doesn't give the right answer.

M
MSA

• So  such that 
   "  does not self-accept"
   is independent!

∃M
M



1st Incompleteness Theorem  (Soundness version #2)
Assume ZFC is sound. What is an explicit 
statement  independent of ZFC?S?

 SA 1 0 1

0 ∞ 1 ...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ...

M1
M2
M3

...

1 1 1 ...

1 0 ∞ ...
...... ... ...

...

def  Resolve( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def  MSA(⟨M⟩) :
return Resolve( "  does not self-accept" )⟨ M ⟩



1st Incompleteness Theorem  (Soundness version #2)
Assume ZFC is sound. What is an explicit 
statement  independent of ZFC?S?

 SA 1 0 1

0 ∞ 1 ...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ...

M1
M2
M3

...

1 1 1 ...

1 0 ∞ ...
...

... ... ...

...

def  Resolve( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def  MSA(⟨M⟩) :
return Resolve( "  does not self-accept" )⟨ M ⟩



1st Incompleteness Theorem  (Soundness version #2)
Assume ZFC is sound. What is an explicit 
statement  independent of ZFC?S?

 SA 1 0 1

0 ∞ 1 0 ...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨MSA⟩ ...

M1
M2
M3

MSA
...

1 1 1 ∞ ...

1 0 ∞ 0 ...

1 0 1 ...
... ... ... ...

...

def  Resolve( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def  MSA(⟨M⟩) :
return Resolve( "  does not self-accept" )⟨ M ⟩

Conclusions:
•   does not give the right answer when the input is .MSA ⟨MSA⟩

•  "  does not self-accept"  is independent of ZFC.I = MSA

∞



1st Incompleteness Theorem  (Soundness version #2)

Theorem:                  If ZFC is sound,  
"  does not accept" is independent of ZFC.MSA(⟨MSA⟩)

def  Resolve( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def  MSA(⟨M⟩) :
return Resolve( "  does not self-accept" )⟨ M ⟩

  = "  does not self-accept"I MSADefinition: 



1st Incompleteness Theorem  (Soundness version #2)

Can we replace "ZFC sound" with "ZFC consistent"??

Theorem:                  ZFC is sound       is independent of ZFC.→ I

  = "  does not self-accept"I MSADefinition: 

Theorem:                  ZFC is sound     .→ I

def  Resolve( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def  MSA(⟨M⟩) :
return Resolve( "  does not self-accept" )⟨ M ⟩



0th Incompleteness Theorem

1st Incompleteness Theorem  (Soundness version #1)

1st Incompleteness Theorem  (Soundness version #2)

1st Incompleteness Theorem  (Consistency version)

2nd Incompleteness Theorem

The Plan



1st Incompleteness Theorem  (Consistency version)



1st Incompleteness Theorem  (Soundness version #2)

Theorem:                  ZFC is consistent       is independent of ZFC.→ I

  = "  does not self-accept"I MSADefinition: 

Theorem:                  ZFC is consistent     .→ I

def  Resolve( ):      
    for k = 1, 2, 3, ...
        for every string w of length k:
            if  accepts:  return True
            if  accepts:  return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def  MSA(⟨M⟩) :
return Resolve( "  does not self-accept" )⟨ M ⟩



0th Incompleteness Theorem

1st Incompleteness Theorem  (Soundness version #1)

1st Incompleteness Theorem  (Soundness version #2)

1st Incompleteness Theorem  (Consistency version)

2nd Incompleteness Theorem

The Plan



2nd Incompleteness Theorem



Reductions for provability



Reductions for provability

Can use reductions to expand the landscape of 
unprovability.!

Proving  reduces to proving   means:  " " is provable.S T T → S

              provable     provableT ⟹ S
 unprovable     unprovableS ⟹ T

If  reduces to   then:S T



2nd Incompleteness Theorem

  = "  does not self-accept"  is unprovable.I MSA

So any , such that  reduces to , is unprovable.T I T

Theorem:                  ZFC is consistent     .→ I

By GORM-to-ZFC Thesis

 GORM-proof of theorem∃  ZFC-proof of theorem∃⟶

Proving  reduces to proving   means:  " " is provable.S T T → S

              provable     provableT ⟹ S
 unprovable     unprovableS ⟹ T

If  reduces to   then:S T



2nd Incompleteness Theorem

Theorem:                   
If ZFC is consistent, "ZFC is consistent" is not provable.





Hilbert's Program

- Formalize GORM.  (Create FORM)

- Prove FORM is complete.

- Prove FORM is consistent.





Hilbert's Program

- Formalize GORM.  (Create FORM)

- Prove FORM is complete.

- Prove FORM is consistent.

- Prove isProvable is decidable.

isProvable is undecidable!



That's all for PART 1 of CS251

- Foundations of math.

- Birth of computer science.

- Formalizing computation.

- Uncountability  Uncomputability  Unprovability.→ →



What is next?

These are computable! But are they practically computable?

Yes, the following (and many more) are uncomputable:

S provable?
True 
or 

False

M
halts?

True 
or 

Falsex

S provable with 
  symbols?≤ k

True 
or 

Falsek

What about:

M halts within 
  steps?≤ k

True 
or 

Falsek
x



What is next?

We enter the land of complexity theory 
and the famous "P vs NP".


