
CS251

Computer Science
Theoretical

Great Ideas
in

Limits of Human Reasoning

Last Time

Diagonalize against the set of all decidable languages:
 () is undecidable.SELF-ACCEPTS SA

 SELF-ACCEPTS ≤ SELF-ACCEPTS ≤ ACCEPTS

 ≤ HALTS ≤ SAT ≤ NEQ

Undecidable problems

not involving Turing Machines

Hilbert’s 10th Problem
Determining if a given multivariate polynomial with
integral coefficients has an integer root.

e.g.

Does it have a real root? Decidable!

Does it have a rational root? No one knows!

5xy2z + 8yz3 + 100x99

Undecidable!
Proved in 1970 by Matiyasevich-Robinson-Davis-Putnam.

Proved in 1951 by Tarski.

Post's Correspondence Problem (PCP)
Input: A finite collection of "dominoes"

 having strings written on each half.

a

ab

a

cabc c

bcc

Output: Accept if it is possible to match the strings.

a

ab

a

cabcc

bcc

c

bcc abccabcc

abccabcc

Undecidable!
Proved in 1946 by Post.

Wang Tiles
Input: A finite collection of "Wang Tiles" (squares)

 with colors on the edges.

Output: Accept iff it is possible to make an infinite grid

 from copies of the given squares,

 where touching sides must color-match.

Undecidable!
Proved in 1966 by Berger.

Mortal Matrices
Input: Two 21x21 matrices of integers and .U V

Output: Accept iff it is possible to multiply and

 (multiple times in any order)

 to get to the 0 matrix.

U V

Undecidable!
Proved in 2007 by Halava, Harju, Hirvensalo.

All languages
𝒫(Σ*)

Finitely describable

HALTS
ACCEPTS

SAT NEQ

TM-decidable

ENTSCHEIDUNGSPROBLEM

PCP

WANG-TILES

Completed:

Next:
Understand (logical) human reasoning and its limits.

Formally define computation.

Understand the limits of computation.

Good Old Regular Mathematics

(GORM)

GORM: Good Old Regular Mathematics

Applications

Something of

interest

Mathematical

Model

New

Knowledge

Real World Abstract World

logic

Applications

Gambling
Probability

Theory

New

Knowledge

Real World Abstract World

GORM: Good Old Regular Mathematics

Applications

Farming
Plane

Geometry

New

Knowledge

Real World Abstract World

GORM: Good Old Regular Mathematics

Applications

Mathematical

Reasoning

Mathematical

Model

logic

New

Knowledge

Real World Abstract World

(GORM)

FORM: Formalization of GORM

Mathematical

Model

Real World Abstract World

Mathematical Statement
Axiom
Deduction Rule
Proof
Truth

FORM: Formalization of GORM

Elements of Mathematical Reasoning (Informal)

Statement:

Axiom:

Deduction Rule:

Proof:

A well-formed sentence with a truth value.

An obviously true statement.

A rule allowing you to derive new true statements

from other true statements.

A chain of deductions, starting from axioms,

and ending at the statement.

Hope: truth provable≡

knowledge proof≡

Essential components of FORM

Proving interesting properties of FORM
(and therefore GORM)

Part 1:

Part 2:

Essential components of FORM
Part 1:

GORM is a computational process

 (proof of , if it exists)P S statement S
Prover

Accept

or

Reject

statement S

proof P Verifier

Statements and proofs are represented as finite-length strings.N

Want verification to be (efficiently) decidable.N

GORM is a computational process

 statement S
Provable?

Accept

or

Reject

Accept

or

Reject

statement S

proof P Verifier

Statements and proofs are represented as finite-length strings.N

Want verification to be (efficiently) decidable.N

FORM: Formalization of GORM
FORM is a mathematical model (formalization) of GORM such that:

- For every statement in GORM with a truth value,

 there is a precise representation of in FORM (denoted by).

S
S ⟨S⟩

- For every argument in GORM,

 there is a precise representation of in FORM (denoted by).

P
P ⟨P⟩

- FORM specifies a decider TM (called a verifier) such that

 accepts iff is a proof of .

V
V(⟨S⟩, ⟨P⟩) P S

 is provable means such that accepts.S ∃w ∈ Σ* V(⟨S⟩, w)

From Verifier to Prover

Let be the verifier. We can build a prover from it:V

def Prover():

⟨S⟩
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return V(⟨S⟩, w) w

def isProvable():

⟨S⟩
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

V(⟨S⟩, w)
V(⟨¬S⟩, w)

Is there an agreed upon FORM that we can work with??

The Church-Turing Thesis of Mathematics

GORM-to-ZFC Thesis

Church-Turing Thesis (GORA-to-TM Thesis):

TM is the right model for an algorithm.

GORM-to-ZFC Thesis:
The Zermelo–Fraenkel-Choice (ZFC) axiomatic system

is the right model for GORM.

Every algorithm compiles down to a TM.

Every GORM-proof compiles down to a ZFC-proof.

Every GORM-statement compiles down to a ZFC-statement.

Essential components of FORM

Proving interesting properties of FORM
(and therefore GORM)

Part 1:

Part 2:

Proving interesting properties of FORM
(and therefore GORM)

Part 2:

Properties you want from FORM
1. Consistency

2. Soundness

3. Completeness

For every statement , at most one of or is provable.S S ¬S

If is provable, then is true.S S

For every statement , at least one of or is provable.S S ¬S

Soundness Consistency.⟹

Not consistent Any statement is provable.⟹ Want to prove .

AFSOC .

Derive (prove) .

Derive (prove) .

Contradiction.

T
¬T

S
¬S

(false statements are not provable)

Properties you want from an axiomatic system
1. Consistency

2. Soundness

3. Completeness

For every statement , at most one of or is provable.S S ¬S

If is provable, then is true.S S

For every statement , at least one of or is provable.S S ¬S

(false statements are not provable)

Sound & Complete ⟹N truth provable.≡

Hilbert's Program

- Formalize GORM. (Create FORM)

- Prove FORM is complete.

- Prove FORM is consistent.

Puzzle: Why not prove soundness?

Is Hilbert's Program achievable??

finite

vs

infinite

limits of

computation

limits of

human reasoning

"Satisfactory" FORM

Compute the uncomputable

Contrapositive:

0th Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

The Plan

The Setting

 is provable: S
 is independent: S

there is a proof of in ZFCS
Neither nor is provableS ¬S

Incompleteness: an independent ∃ S

The FORM we are using: ZFC axiomatic system.

GORM-to-ZFC Thesis:
For every GORM-statement and GORM-proof,

there is a corresponding ZFC-statement and ZFC-proof.

Terminology:

Accept

or

Reject

(statement) S
P

Verifier
V

(is a proof of ?)P S

0th Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

The Plan

0th Incompleteness Theorem

The 0th Incompleteness Theorem

Finitely describable

Mathematical Concepts uncountable

countable

Observation: We can't hope to reason about everything!

0th Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

The Plan

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #1)

Assume it is.

We can then compute/decide any truth!!!

def Resolve():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

Then truth provable.≡

Can ZFC be both sound & complete??

1st Incompleteness Theorem (Soundness version #1)

Assume it is.

We can then compute/decide any truth!!!

def isTrue():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

Then truth provable.≡

Can ZFC be both sound & complete??

def MHALTS(⟨M, x⟩) :
return isTrue(" halts")⟨ M(x) ⟩

1st Incompleteness Theorem (Soundness version #1)

Assume it is.

We can then compute/decide any truth!!!

def isTrue():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

Then truth provable.≡

Can ZFC be both sound & complete??

def MSAT(⟨M⟩) :
return isTrue(" such that accepts")⟨ ∃x M(x) ⟩

1st Incompleteness Theorem (Soundness version #1)

Assume it is.

We can then compute/decide any truth!!!

def isTrue():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

Then truth provable.≡

Can ZFC be both sound & complete??

def MSA(⟨M⟩) :
return isTrue(" does not self-accept")⟨ M ⟩

complement of SELF-ACCEPTS

1st Incompleteness Theorem (Soundness version #1)
def Resolve():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def MSA(⟨M⟩) :
return Resolve(" does not self-accept")⟨ M ⟩

Theorem:
ZFC cannot be both sound and complete.
I.e. if ZFC is sound, then it is incomplete.

0th Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

The Plan

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Soundness version #2)
Assume ZFC is sound. What is an explicit
statement independent of ZFC?S?

def Resolve():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def MSA(⟨M⟩) :
return Resolve(" does not self-accept")⟨ M ⟩

Observations:
• is not a correct decider for .MSA SA

• So such that

 Resolve(" does not self-accept")
 doesn't give the right answer.

∃M
⟨ M ⟩

• So for some input (for some),

 doesn't give the right answer.

M
MSA

• So such that

 " does not self-accept"
 is independent!

∃M
M

1st Incompleteness Theorem (Soundness version #2)
Assume ZFC is sound. What is an explicit
statement independent of ZFC?S?

 SA 1 0 1

0 ∞ 1 ...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ...

M1
M2
M3

...

1 1 1 ...

1 0 ∞ ...
......

...

def Resolve():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def MSA(⟨M⟩) :
return Resolve(" does not self-accept")⟨ M ⟩

1st Incompleteness Theorem (Soundness version #2)
Assume ZFC is sound. What is an explicit
statement independent of ZFC?S?

 SA 1 0 1

0 ∞ 1 ...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ...

M1
M2
M3

...

1 1 1 ...

1 0 ∞ ...
...

...

...

def Resolve():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def MSA(⟨M⟩) :
return Resolve(" does not self-accept")⟨ M ⟩

1st Incompleteness Theorem (Soundness version #2)
Assume ZFC is sound. What is an explicit
statement independent of ZFC?S?

 SA 1 0 1

0 ∞ 1 0 ...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨MSA⟩ ...

M1
M2
M3

MSA
...

1 1 1 ∞ ...

1 0 ∞ 0 ...

1 0 1 ...
...

...

def Resolve():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def MSA(⟨M⟩) :
return Resolve(" does not self-accept")⟨ M ⟩

Conclusions:
• does not give the right answer when the input is .MSA ⟨MSA⟩

• " does not self-accept" is independent of ZFC.I = MSA

∞

1st Incompleteness Theorem (Soundness version #2)

Theorem: If ZFC is sound,

" does not accept" is independent of ZFC.MSA(⟨MSA⟩)

def Resolve():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def MSA(⟨M⟩) :
return Resolve(" does not self-accept")⟨ M ⟩

 = " does not self-accept"I MSADefinition:

1st Incompleteness Theorem (Soundness version #2)

Can we replace "ZFC sound" with "ZFC consistent"??

Theorem: ZFC is sound is independent of ZFC.→ I

 = " does not self-accept"I MSADefinition:

Theorem: ZFC is sound .→ I

def Resolve():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def MSA(⟨M⟩) :
return Resolve(" does not self-accept")⟨ M ⟩

0th Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

The Plan

1st Incompleteness Theorem (Consistency version)

1st Incompleteness Theorem (Soundness version #2)

Theorem: ZFC is consistent is independent of ZFC.→ I

 = " does not self-accept"I MSADefinition:

Theorem: ZFC is consistent .→ I

def Resolve():
 for k = 1, 2, 3, ...
 for every string w of length k:
 if accepts: return True
 if accepts: return False

⟨S⟩

V(⟨S⟩, w)
V(⟨¬S⟩, w)

def MSA(⟨M⟩) :
return Resolve(" does not self-accept")⟨ M ⟩

0th Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

The Plan

2nd Incompleteness Theorem

Reductions for provability

Reductions for provability

Can use reductions to expand the landscape of
unprovability.!

Proving reduces to proving means: " " is provable.S T T → S

 provable provableT ⟹ S
 unprovable unprovableS ⟹ T

If reduces to then:S T

2nd Incompleteness Theorem

 = " does not self-accept" is unprovable.I MSA

So any , such that reduces to , is unprovable.T I T

Theorem: ZFC is consistent .→ I

By GORM-to-ZFC Thesis

 GORM-proof of theorem∃ ZFC-proof of theorem∃⟶

Proving reduces to proving means: " " is provable.S T T → S

 provable provableT ⟹ S
 unprovable unprovableS ⟹ T

If reduces to then:S T

2nd Incompleteness Theorem

Theorem:

If ZFC is consistent, "ZFC is consistent" is not provable.

Hilbert's Program

- Formalize GORM. (Create FORM)

- Prove FORM is complete.

- Prove FORM is consistent.

Hilbert's Program

- Formalize GORM. (Create FORM)

- Prove FORM is complete.

- Prove FORM is consistent.

- Prove isProvable is decidable.

isProvable is undecidable!

That's all for PART 1 of CS251

- Foundations of math.

- Birth of computer science.

- Formalizing computation.

- Uncountability Uncomputability Unprovability.→ →

What is next?

These are computable! But are they practically computable?

Yes, the following (and many more) are uncomputable:

S provable?
True

or

False

M
halts?

True

or

Falsex

S provable with

 symbols?≤ k

True

or

Falsek

What about:

M halts within

 steps?≤ k

True

or

Falsek
x

What is next?

We enter the land of complexity theory

and the famous "P vs NP".

