CS5251

Great Ideas

in
Theoretical

Computer Science

Limits of Human Reasoning

Last Time

Diagonalize against the set of all decidable languages:

SELF-ACCEPTS (SA) is undecidable.

SELF-ACCEPTS

IN

SELF-ACCEPTS < ACCEPTS

< HALTS

IN

SAT < NEQ

Undecidable problems
not involving Turing Machines

Hilbert's 10th Problem

Determining it a given multivariate polynomial with
integral coefficients has an integer root.

e.g. bHry’z+ 8yz°® + 10027
Undecidable!

Does it have a real root? Decidable!

Proved in 1951 by Tarski.

Does it have a rational root? No one knows!

Post's Correspondence Problem (PCP)

Input: A finite collection of "dominoes"
having strings written on each half.

B B B
0

Output: Accept if it is possible to match the strings.

™

e o
3

Undecidable!
Proved in 1946 by Post.

=== abccabcc

=== abccabcc

Wang Tiles

Input: A finite collection of "Wang Tiles" (squares)
with colors on the edges.

3 e O

Output: Accept ift it is possible to make an infinite grio

from copies of the given squares,
where touching sides must color-match.

Undecidable!
Proved in 1966 by Berger.

Mortal Matrices

Input: Two 21x21 matrices of integers U and V.

Output: Accept iff it is possible to multiply U and V
(multiple times in any order)
to get to the 0 matrix.

Undecidable!
Proved in 2007 by Halava, Harju, Hirvensalo.

All languages

Finitely describable

HALTS

ACCEPTS
WANG-TILES SAT NEQ

ENTSCHEIDUNGSPROBLEM

PCP
\\'I’M—deciday

Completed:

Formally define computation.

Understand the limits of computation.

Next:

Understand (logical) human reasoning and its limits.

Good Old Regular Mathematics
(GORM)

GORM: Good Old Regular Mathematics

Real World Abstract World

Something of Mathematical

interest Model
Logic
New
Applications

Knowledge

GORM: Good Old Regular Mathematics

Real World Abstract World
Gambling |
Probability
0 O Theory
New

Applications Knowledge

ORM: Good Old Regular Mathematics

Real World Abstract Wor
Farming
| Plane
| Geometry
; New

nowledge

FORM: Formalization of GORM

Real World Abstract World

Mathematical Mathematical

Reasoning Model
(GORM)
l\ogic
N
Applications -

Knowledge

FORM: Formalization of GORM

Real World Abstract World

Mathematical Statement
AXxiom

Deduction Rule

Mathematical
Model

Proof
Truth

Elements of Mathematical Reasoning (Informal)

Statement: A well-formed sentence with a truth value.
Axiom: An obviously true statement.

Deduction Rule: A rule allowing you to derive new true statements
from other true statements.

Proof: A chain of deductions, starting from axioms,
and ending at the statement.

knowledge = proof

Hope: truth = provable

Part 1:

Essential components of FORM

Part 2:

Proving interesting properties of FORM
(and therefore GORM)

Part 1:

Essential components of FORM

GORM is a computational process

r)
statement § —> k —> P (proof of §, it it exists)
. Prover |
e)
statement § —> k Accept
—> oOr
proof P —{ Verifier | Reject

0 Statements and proots are represented as finite-length strings.

0 Want veritication to be (efficiently) decidable.

GORM is a computational process

- N
k Accept

statement § —> —> or

_ Provable? Reject

J

4 D
statement § —> k Accept
—>

or

proof P —{ Verifier | Reject

0 Statements and proots are represented as finite-length strings.

0 Want veritication to be (efficiently) decidable.

FORM: Formalization of GORM

FORM is a mathematical model (tormalization) ot GORM such that:

- For every statement § in GORM with a truth value,
there is a precise representation of S in FORM (denoted by (S)).

- For every argument P in GORM,
there is a precise representation of P in FORM (denoted by (P)).

- FORM specities a decider TM V' (called a verifier) such that
V((S), (P)) accepts iff P is a proof of §.

S is provable means dw € X* such that V({S), w) accepts.

From Verifier to Prover

Let V be the verifier. We can build a prover from it:

def Prover({S)):
fork=1,2,3, ...
for every string w of length k:
if V((S),w) accepts: return w

def isProvable(({S)):
fork=1,2,3, ...
for every string w of length &:
if V((S),w) accepts: return True
if V({—~S), w) accepts: return False

o s there an agreed upon FORM that we can work with?

The Church-Turing Thesis of Mathematics

GORM-to-ZFC Thesis

Church-Turing Thesis (GORA-to-TM Thesis):

TM is the right model for an algorithm.

Every algorithm compiles down to a TM.

GORM-to-ZFC Thesis:

The Zermelo-Fraenkel-Choice (ZFC) axiomatic system
is the right model for GORM.

Every GORM-statement compiles down to a ZFC-statement.

Every GORM-proot compiles down to a ZFC-proof.

Part 1:

Essential components of FORM

Part 2:

Proving interesting properties of FORM
(and therefore GORM)

Part 2:

Proving interesting properties of FORM
(and therefore GORM)

Properties you want from FORM

1. Consistency

For every statement S, at most one of § or =S is provable.

Not consistent =—> Any statement is provable. Want to prove 7.
AFSOC —T.
2. Soundness Derive (prove) 3.
f S is provable, then S is true. Derive (prove) 3.

Contradiction.

(false statements are not provable)

Soundness = Consistency.

3. Completeness

For every statement S, at least one of S or =S is provable.

Properties you want from an axiomatic system

1. Consistency

For every statement §, at most one of § or S is provable.

2. Soundness

t S is provable, then § is true.

(false statements are not provable)

3. Completeness

For every statement S, at least one of § or =S is provable.

0 Sound & Complete = truth = provable.

Hilbert's Program
- Formalize GORM. (Create FORM)
- Prove FORM is complete.

- Prove FORM is consistent.

Puzzle: Why not prove soundness?

0 s Hilbert's Program achievable?

finite
VS m— —l

limits of limits of

e computation human reasoning
infinite

v

Contrapositive:

"Satistactory" FORM

—» Compute the uncomputable

The Plan

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

The Setting

The FORM we are using: ZFC axiomatic system.
GORM-to-ZFC Thesis:

For every GORM-statement and GORM-proof,
there is a corresponding ZFC-statement and ZFC-proof.

(statement) § —>

-

P —

Terminology:

S is provable:

Verifier
%

) Accept
—> oOr
) Reject

(is P a proof of §7?)

there is a proot of § in ZFC

S is independent: Neither § nor =S is provable

Incompleteness:

3 an independent §

The Plan

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

Oth Incompleteness Theorem

The Oth Incompleteness Theorem

Mathematical Concepts uncountable

Finitely describable
@countable

Observation: We can't hope to reason about everything!

The Plan

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #

1)

1st Incompleteness Theorem (Soundness version #1)

o Can ZFC be both sound & complete?

Assume it is. Then truth = provable.

We can then compute/decide any truth!!!

def Resolve({S)):
fork=1,2,3, ...
for every string w of length k:
if V((S),w) accepts: return True
if V({—S),w) accepts: return False

1st Incompleteness Theorem (Soundness version #1)

o Can ZFC be both sound & complete?

Assume it is. Then truth = provable.

We can then compute/decide any truth!!!

def isTrue({S)):
fork=1,2,3, ...
for every string w of length k:
if V((S),w) accepts: return True
if V({~S),w) accepts: return False

def MHALTS(<M’ x)) .
return isTrue({"M(x) halts"))

1st Incompleteness Theorem (Soundness version #1)

o Can ZFC be both sound & complete?

Assume it is. Then truth = provable.

We can then compute/decide any truth!!!

def isTrue({S)):
fork=1,2,3, ...
for every string w of length k:
if V((S),w) accepts: return True
if V({~S),w) accepts: return False

def MqaT((M)) :
return isTrue({" dx such that M(x) accepts"))

1st Incompleteness Theorem (Soundness version #1)

9 Can ZFC be both sound & complete?

Assume it is. Then truth = provable.

We can then compute/decide any truth!!!

def isTrue({S)):
fork=1,2,3, ...
for every string w of length k:
if V((S),w) accepts: return True
if V({—S),w) accepts: return False

def Mgr((M)): # complement of SELF-ACCEPTS

return isTrue({"M does not self-accept"))

1st Incompleteness Theorem (Soundness version #1)

def Resolve((S)):
fork=1,2,3, ...

def Mgz ((M)) :

return Resolve({"M does not self-accept"))

for every string w of length k:
if V((S),w) accepts: return True
if V((—S),w) accepts: return False

p
Theorem:

.e. it ZFC is sound, then it is incomplete.

/ZFC cannot be both sound and complete.

The Plan

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #

D)

1st Incompleteness Theorem (Soundness version #2)

Assume ZFC is sound. What is an explicit
statement S independent of ZFC?

Observations:

def Resolve((S)): * Mgy is not a correct decider for SA.
fork=1,2,3, ...
for every string w of length k: * So for some input (for some M),
if V((S),w) accepts: return True Mgx doesn't give the right answer.

if V({~S), w) accepts: return False

e SodM such that

def Mga((M)): Resolve({"M does not self-accept"))
return Resolve({"M does not self-accept")) doesn't give the right answer.

e SodM such that

"M does not selt-accept”
is independent!

1st Incompleteness Theorem (Soundness version #2)
o Assume ZFC is sound. What is an explicit

statement § independent of ZFC? (M) (M,) (M)
def Resolve((S)): M| [0] oo 7
for k=1,2,3, ... M,| 1 1
for every string w of length k:
if V({S), w) accepts: return True My| 0

if V({—S),w) accepts: return False

def Mgz ((M)) :

return Resolve({"M does not self-accept"))

1st Incompleteness Theorem (Soundness version #2)
o Assume ZFC is sound. What is an explicit

statement § independent of ZFC? (M) (M,) (M)
def Resolve((S)): M| [0] oo 7
for k=1,2,3, ... M,| 1 1
for every string w of length k:
if V({S), w) accepts: return True My| 0

if V({—S),w) accepts: return False

def Mgz ((M)) :

return Resolve({"M does not self-accept"))

1st Incompleteness Theorem (Soundness version #2)
e Assume ZFC is sound. What is an explicit

statement S independent of ZFC? (M) (M,) (M) (Mgx) -
def Resolve(($)): M, @ co 1 0
for k=1,2,3, .. M,| 1 1
for every string w of length k:
if V({S),w) accepts: return True My| 0 O
if V((—S),w) accepts: return False Mgx| 0 1
def Mgr((M)) : :
return Resolve({"M does not self-accept"))

SA 1 0 1
Conclusions: A

* Mg does not give the right answer when the input is (Mgz).
* [= "Mgx does not self-accept" is independent ot ZFC.

1st Incompleteness Theorem (Soundness version #2)

def Resolve({S)):
fork=1,2,3, ...
for every string w of length k:
if V((S),w) accepts: return True
if V({~S),w) accepts: return False

def Mgx((M)) :

return Resolve({"M does not self-accept"))

Definition: [= "Mgx does not self-accept"

p
Theorem: If ZFC is sound,

"Mga({Mgg)) does not accept” is independent ot ZFC.

1st Incompleteness Theorem (Soundness version #2)

def Resolve({S)):
fork=1,2,3, ...
for every string w of length k:
if V((S),w) accepts: return True
if V({~S),w) accepts: return False

def Mgz ((M)) :

return Resolve({"M does not self-accept"))

Definition: [= "Mgx does not self-accept"

p
Theorem: ZFCissound — [isindependent of ZFC. '

-
Theorem: ZFCissound — 1. '

e Can we replace "ZFC sound" with "ZFC consistent"?

The Plan

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

1st Incompleteness Theorem (Consistency version)

1st Incompleteness Theorem (Soundness version #2)

def Resolve({S)):
fork=1,2,3, ...
for every string w of length k:
if V((S),w) accepts: return True
if V({~S),w) accepts: return False

def Mgx((M)) :

return Resolve({"M does not self-accept"))

Definition: [= "Mgx does not self-accept"

p
Theorem: ZFCis consistent — [is independent of ZFC.'

p
Theorem: ZFCis consistent — I. '

The Plan

Oth Incompleteness Theorem

1st Incompleteness Theorem (Soundness version #1)

1st Incompleteness Theorem (Soundness version #2)

1st Incompleteness Theorem (Consistency version)

2nd Incompleteness Theorem

2nd Incompleteness Theorem

Reductions for provability

Reductions for provability

Proving S reduces to proving T means: "T — §" is provable.

It S reduces to T then: T provable = § provable
S unprovable = T unprovable

o Can use reductions to expand the landscape of
unprovability.

2nd Incompleteness Theorem

Proving S reduces to proving T means: "T — §" is provable.

It S reduces to T then: T provable = § provable
S unprovable = T unprovable

I = "Mgx does not selt-accept” is unprovable.

So any T, such that I reduces to 7, is unprovable.

-
Theorem: ZFCis consistent — I. '

By GORM-to-ZFC Thesis
3 GORM-proof of theorem — 3 ZFC-proof of theorem

2nd Incompleteness Theorem

p
Theorem:

it ZFC is consistent, "ZFC is consistent" is not provable.

WHM IUST HAPPENED‘"N

wl 11E) el ETHELOTHTEL

Hilbert's Program
- Formalize GORM. (Create FORM)
- Prove FORM is complete.

- Prove FORM is consistent.

d

Hilbert's Program

- Formalize GORM. (Create FORM)
- Prove FORM is complete.

- Prove FORM is consistent.

- Prove isProvable is decidable.

iIsProvable is undecidable!

That's all for PART 1 of CS251

- Foundations of math.
- Birth of computer science.

- Formalizing computation.

- Uncountability = Uncomputability — Unprovability.

What is next?

Yes, the following (and many more) are uncomputable:

4) 4)

True M — True
S —| provable? —> or halts? — or
_ y False X y False
What about:
r) r)
5 —>| provable with frue M halts within frue
< —> or X —> < , —> oOr
kK —{ < k symbols"] False) S steps] False

These are computable! But are they practically computable?

What is next?

We enter the land of complexity theory
and the famous "P vs NP".

