CS5251 .,
Grea‘t Ideas hx

Theoretical k ‘

i 4k

Computer Science
Time Complexity

And the Power of Algorithms



2 Main Questions in Theory of Computation

Computability of a problem:

s there an algorithm to solve it?

Complexity of a problem:

s there an efficient algorithm to solve it?

- time

- space (memory)

- randomness

- quantum resources



Computational Complexity (Practical Computability)

Simulations (e.g. of physical or biological systems)

- tremendous app\ications in science, engineering, medicine,...

Optimization problems

- arise in essentially every industry

Social good

- finding efficient ways of helping others

list goes on
Artificial intelligence

Security, privacy, cryptography

- applications of computationally hard problems



Computational Complexity (Practical Computability)

- How do we define computational complexity?
- What is the right level of abstraction to use?

- How do we analyze complexity?

- What are some interesting problems to study?

- What can we do to better understand
the complexity of problems?



Kurt Friedrich Godel (1906-1978)

b ‘l

One of the most important logicians in history.




John von Neumann (1903-1957)

Contents [hide]

1 Early life and education
2 Career and abilities
2.1 Beginnings
2.2 Set theory
2.3 Geometry
2.4 Measure theory
2.5 Ergodic theory
2.6 Operator theory
2.7 Lattice theory
2.8 Mathematical formulation of quantum mechanics

2.9 Quantum logic
2.10 Game theory
2.11 Mathematical economics

212 Linear programming - Mathematical formulation of
2.13 Mathematical statistics .

2.14 Nuclear weapons quantum meChanICS

2.15 The Atomic Energy Committee

2.16 The ICBM Committee .

2.17 Mutual assured destruction - FO un d ed th e ﬂ e ‘ d Of

2.18 C ti . .

2 16 Flid dynamics game theory in mathematics.

2.20 Politics and social affairs
2.21 On the eve of World War I

222 Greece and Rome - Created some of the first
e general-purpose computers.

2.24 Cognitive abilities
2.25 Mastery of mathematics



Godel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let w(F,n) be the
number of steps the machine requires for this and let ¢(n) = max_F yp(F,n). The
question is how fast ¢p(n) grows for an optimal machine. One can show that

¢(n) = k - n. If there really were a machine with ¢(n) ~k - n (or even ~ k - n2), this

would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that ¢p(n) grows that slowly.



Godel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let w(F,n) be the
number of steps the machine requires for this and let ¢(n) = max_F yp(F,n). The
question is how fast ¢p(n) grows for an optimal machine. One can show that

¢(n) > k - n. If there really were a machine with @(n) ~k - n (or even ~ k - n2), this

would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that ¢p(n) grows that slowly.



odel's letter to von Neumann (1956)

ENTSCHEIDUNGSPROBLEM
UNDECIDABLE
s h True
mathematical
—>| provapble? — or
statement F
_ Y False
| DECIDABLE
mathematical - ~
—> . True
statement F provable with
—> or
n symbols?
n —{ Y False




Godel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let w(F,n) be the
number of steps the machine requires for this and let ¢(n) = max_F p(F,n). The
question is how fast ¢(n) grows for an optimal machine. One can show that

¢(n) > k - n. If there really were a machine with ¢@(n) ~k - n (or even ~ k - n2), this

would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that ¢p(n) grows that slowly.



Godel's letter to von Neumann (1956)

mathematical - ~

—> . True
statement F provable with
—> or
n symbols?
n —{ Y False

WY(F,n) = the number of steps required for input (F, n)

o(n) = max ¥(F,n) ° worst-case notion of
r | running time

o How fast does @(n) grow for an optimal machine?

asymptotic analysis



Godel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let w(F,n) be the
number of steps the machine requires for this and let ¢(n) = max_F yp(F,n). The
question is how fast ¢p(n) grows for an optimal machine. One can show that

¢(n) = k - n. If there really were a machine with ¢(n) ~k - n (or even ~ k - n2), this

would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that ¢p(n) grows that slowly.



Godel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let w(F,n) be the
number of steps the machine requires for this and let ¢(n) = max_F yp(F,n). The
question is how fast ¢p(n) grows for an optimal machine. One can show that

¢(n) > k - n. If there really were a machine with ¢@(n) ~k - n (or even ~ k - n2), this

would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that ¢p(n) grows that slowly.



Godel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let w(F,n) be the
number of steps the machine requires for this and let ¢(n) = max_F yp(F,n). The
question is how fast ¢p(n) grows for an optimal machine. One can show that

¢(n) > k - n. If there really were a machine with ¢@(n) ~k - n (or even ~ k - n2), this

would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that ¢p(n) grows that slowly.

This is the first formalization of the P vs NP problem.



o s undecidability a real issue?



Yes, the tfollowing (and many more) is uncomputable:

-

o

~

provable? —

J

True
or
False

But these are computable:

§y —>

kK —

s e True
provable with
b ‘ - > Or
kgksym ols? colse

But are they practically computable?

g
M a True
halts? —— or
X = _ False
- \
M = halts within True
x —> , —> or
kK — < k steps" ] False




o What really matters is computational complexity.



Part 1 of CS251:

Understand the divide between
computable and uncomputable.

Part 2 of CS251:

Understand the divide between
practically computable and practically uncomputable.



What is the meaning of:

"The (asymptotic) running time complexity
of algorithm A is O(n?)."”



Great Ideas in Complexity Analysis

The (worst-case) running time of an algorithm A is a function

I'y(n) = max # steps A(x) takes.
Inputs x
of length n

e Worst-case analysis.

e Asymptotic analysis and the Big-O notation.

* Polynomial-time.



* Worst-case analysis.

Why worst-case?

We are not dogmatic about it.

Can study "average-case” (random inputs)

Can try to look at "typical” instances.

BUT worst-case analysis has its advantages:
- An ironclad guarantee.
- Hard to detfine “typical” instances.
- Random instances are often not representative.

- Often much easier to analyze.



Great Ideas in Complexity Analysis

The running time of an algorithm A is a function

I'y(n) = max # steps A(x) takes.
Inputs x
of length n

e Worst-case analysis.

e Asymptotic analysis and the Big-O notation.

* Polynomial-time.



* Asymptotic analysis and the Big-O notation.

Whoa! TMI, Dude., |

1 !
T(n)=gn?+on+1. .

SR, ’
2 4t

Analogous to “too many significant digits”.

"Sweet spot” of Big-O

- coarse enough to suppress details like

programming language, compiler, architecture,...

- sharp enough to make comparisons between
different algorithmic approaches.



Great Ideas in Complexity Analysis

The running time of an algorithm A is a function

I'y(n) = max # steps A(x) takes.
Inputs x
of length n

e Worst-case analysis.

e Asymptotic analysis and the Big-O notation.

* Polynomial-time.



e Polynomial-time. O(n") for some constant k.

In practice:

O(n) Awesome! Like really awesome!

O(nlogn)  Great!

(
O(n*) Kind of efficient.
O(n°) Barely efticient. (?77)
O(n°) Would not call it efficient.
O(n'") Detinitely not efficient!

(

n) WTF?



* Polynomial-time.

In theory: Polynomial time Efficient.

Otherwise Not efficient.

- Poly-time is not meant to mean “etfticient in practice”

- It means "You have done something extraordinarily better
than brute force search.”

- Poly-time: mathematical insight into a problem’s structure.

- If you show, say Factoring Problem, has running time
O(nloo), it will be the best result in CS history.



* Polynomial-time.

In theory: Polynomial time Efficient.

Otherwise Not efficient.

- Robust to notions:
elementary step, what model we use,
reasonable encoding of input, implementation details.

- Nice closure property: Plug in a poly-time alg. into
another poly-time alg. —> poly-time

- Big exponents don't really arise.

- If it does arise, usually can be brought down.



* Polynomial-time.

In theory: Polynomial time Efficient.

Otherwise Not efficient.

- Summary: Poly-time vs not poly-time
is a qualitative difference, not a quantitative one.



poll.cs251.com

What is the running time in terms of the input length?

def 1sSPrime(N):
if (N < 2):
return False
for factor in range(2, N):
if (N % factor == 0):
return False
return Irue



http://poll.cs251.com

Poll Answer

Algorithms on numbers involve BIG numbers.

3618502/7838666131106986593281521497110455743021169260358536775932020762686101
7237846234873269807102970128874356021481964232857782295671675021393065473695
3943653222082116941587830769649826310589717739181525033220266350650989268038
3194839273881505432422077179121838888281996148408052302196889866637200606252
65013109649264/752050900039841761220587111645679465590449716836044240/76996342
718304654479802116829/013490774140090476348290671822743961203698142307099664
345513341463761682442386010/889/741058131271306226214208636008224651510961018

This is still smalll  Imagine having thousands of digits.



Poll Answer

B — 5693030020523999993479642904621911725098567020556258102766251487234031094429

B ~5.7x 10" (5.7 quattorvigintillion )
len(B) = 251

o An algorithm repeating B times is
practically uncomputable.

len(B) = # bits to write B
len(B) ~ log, B



Poll Answer

def 1sSPrime(N):
if (N <2):
return False
for factor in range(2, N):
if (N % tfactor == 0):
return False
return True

# Iterations: =~ N

DANGER

exponential in

_nlog, N _ Alenwv) _ An
N =27% =27 =2 input length



CS251 computational model for complexity analysis



o The model matters if you are interested in

more retined complexity analysis.



CS251 computational model for complexity analysis

The Random-Access Machine (RAM) model

Good combination of reality & simplicity.

+ -/ * < > etc. e.g. 15*251 takes 1 step

for "small numbers"

memory access e.g. A[94] takes 1 step

Small number: Bounded by a polynomial in input length.

Large number: Not small.

o Arithmetic operations/comparisons take 1 step

only if the numbers are small.



Example: Are the numbers small or large?

Small number: Bounded by a polynomial in input length.

Large number: Not small.

def foo(int B): def bar(string s):
return B/+[B i=0
— while (i|<[len(s)):
print(s[i])
i =i+|1

What is the complexity of addition, multiplication, etc.
when the numbers are large?




Integer Addition

def sum(int A, int B):
fori=1 to B:
A+=1
return A

o What is the running-time of this algorithm?

DANGER



Integer Addition

3618502/7/886661311069865932815214971104 A
+ 65743021169260358536775932020762686101 B

1019280490559216696066418648359/77657205 C

# steps to produce C is O(n)



Integer Multiplication

s

361850278866613110698659328152149/71104

X 5932020762686101

) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.04
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9,.9.9.04
) 9,9,9,9,9,9,9,9,9.9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9.9.9,.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.04
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9,.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9,.9.9.94

21465033672205046394665135820269840445260986813/7/425504 C
# steps: O(len(A) - len(B)) = O(n?)

oy




Integer Multiplication

: Probably this is the best,
what else can you really do?

AN Y

A good algorithm designer always thinks:
HOW CAN WE DO BETTER?!?

What algorithm does Python use?



Integer Multiplication n = length of one of the numbers

a b
A= 56[78 = a- 10"+ b
B= (1234 = ¢-10"+d
c d

A-B = (a- 10" +b)-(c- 10"+ d)
= ac - 10"+ (ad + bc) - 10" + bd

Use recursion!



Integer Multiplication

a b
A= (5678 = a-10"+b
B= (1234 = ¢-10"+d
c d

A-B = (a- 10" +b)-(c- 10"+ d)
= ac - 10"+ (ad + bc) - 10" + bd
- Recursively compute ac, ad, bc, and bd.

- Do the multiplications by 10" and 10”*. — O(n)
- Do the additions. — O(n)

T(n) < 4-Tn/2) + O(n)



Level cn

cnl/?2 cnl/?2 cnl/?2 cnl/?2

1 n/2 (n/2] /2] ni2)

cn/4 an CX/ cn/4

2 (4] (n/4) (nr4] (na) e

# distinct nodes at level j: 4) } cnd)

work done per node at level j:  c(n/2) for level j

# levels: log, n

Total: Zkigozn cn2 = O(n?)




Integer Multiplication

A-B = (a- 10" +b)-(c- 10"+ d)

ac - 10" + (ad + be) - 107 + bd

-

Hmm, we don't really care about ad and bc.
We just care about their sum.

Maybe we can get away with 3 recursive calls?
\ J

@ @ci\antro.the.giraﬁe



Integer Multiplication
A-B = (a- 10" +b)-(c- 10"+ d)
= ac - 10" + (ad + bc) - 10"? + bd

(a+ b)(c+d)=ac+ ad + bc + bd

- Recursively compute: ac, bd, (a + b)(c + d)

- Then: (ad+ bc) = (a+ b)(c+d)—ac — bd

T(n) < 3-T(n/2) + O(n)

Is this better??



Level cn
O 7 Karatsuba Algorithm

cn/?2 cni2y cn/?2
1 n2 (n/2] n/2)
cn/4 cn/4] cn/4
2 [}ﬂ4j (ﬁﬁ{) [}ﬂ4j oo
# distinct nodes at level j: 3/ cn(312)
work done per node at level j:  c(n/2) for level j

# levels: log, n

Total: Zjl.igozn cn(3/2) = On'°e7)




Integer Multiplication

! Probably this is the best,
what else can you really do?

L

J

A good algorithm designer always thinks:
HOW CAN WE DO BETTER?!?



Integer Multiplication

Cut the integer into 3 parts of length n/3 each.

Replace 9 multiplications with only 5.
T(n) <5-T(n/3)+ O(n)
T(n) = O(n"*%>)

Can do T(n) = O(n'*) forany e > 0.



Integer Multiplication

Fastest known: nlogn Harvey, Hoeven
(2019)



Lessons

o 't is not easy to understand the power of algorithms.

o Always try to do better!




What is next?

- Graphs and more examples of efficient algorithms

- Polynomial time vs Exponential time



