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And the Power of Algorithms



2 Main Questions in Theory of Computation

Computability of a problem:

s there an algorithm to solve it?

Complexity of a problem:

s there an efficient algorithm to solve it?

- time

- space (memory)

- randomness

- quantum resources



Computational Complexity (Practical Computability)

Simulations (e.g. of physical or biological systems)

- tremendous app\ications in science, engineering, medicine,...

Optimization problems

- arise in essentially every industry

Social good

- finding efficient ways of helping others

list goes on
Artificial intelligence

Security, privacy, cryptography

- applications of computationally hard problems



Computational Complexity (Practical Computability)

- How do we define computational complexity?
- What is the right level of abstraction to use?

- How do we analyze complexity?

- What are some interesting problems to study?

- What can we do to better understand
the complexity of problems?



Kurt Friedrich Godel (1906-1978)

b ‘l

One of the most important logicians in history.




John von Neumann (1903-1957)
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Godel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let w(F,n) be the
number of steps the machine requires for this and let ¢(n) = max_F yp(F,n). The
question is how fast ¢p(n) grows for an optimal machine. One can show that

¢(n) = k - n. If there really were a machine with ¢(n) ~k - n (or even ~ k - n2), this

would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that ¢p(n) grows that slowly.
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o How fast does @(n) grow for an optimal machine?

asymptotic analysis
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This is the first formalization of the P vs NP problem.



o s undecidability a real issue?
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o What really matters is computational complexity.



Part 1 of CS251:

Understand the divide between
computable and uncomputable.

Part 2 of CS251:

Understand the divide between
practically computable and practically uncomputable.



What is the meaning of:

"The (asymptotic) running time complexity
of algorithm A is O(n?)."”



Great Ideas in Complexity Analysis

The (worst-case) running time of an algorithm A is a function

I'y(n) = max # steps A(x) takes.
Inputs x
of length n

e Worst-case analysis.

e Asymptotic analysis and the Big-O notation.

* Polynomial-time.



* Worst-case analysis.

Why worst-case?

We are not dogmatic about it.

Can study "average-case” (random inputs)

Can try to look at "typical” instances.

BUT worst-case analysis has its advantages:
- An ironclad guarantee.
- Hard to detfine “typical” instances.
- Random instances are often not representative.

- Often much easier to analyze.
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* Asymptotic analysis and the Big-O notation.

Whoa! TMI, Dude., |

1 !
T(n)=gn?+on+1. .

SR, ’
2 4t

Analogous to “too many significant digits”.

"Sweet spot” of Big-O

- coarse enough to suppress details like

programming language, compiler, architecture,...

- sharp enough to make comparisons between
different algorithmic approaches.



Great Ideas in Complexity Analysis

The running time of an algorithm A is a function

I'y(n) = max # steps A(x) takes.
Inputs x
of length n

e Worst-case analysis.

e Asymptotic analysis and the Big-O notation.

* Polynomial-time.



e Polynomial-time. O(n") for some constant k.

In practice:

O(n) Awesome! Like really awesome!

O(nlogn)  Great!

(
O(n*) Kind of efficient.
O(n°) Barely efticient. (?77)
O(n°) Would not call it efficient.
O(n'") Detinitely not efficient!

(

n) WTF?



* Polynomial-time.

In theory: Polynomial time Efficient.

Otherwise Not efficient.

- Poly-time is not meant to mean “etfticient in practice”

- It means "You have done something extraordinarily better
than brute force search.”

- Poly-time: mathematical insight into a problem’s structure.

- If you show, say Factoring Problem, has running time
O(nloo), it will be the best result in CS history.



* Polynomial-time.

In theory: Polynomial time Efficient.

Otherwise Not efficient.

- Robust to notions:
elementary step, what model we use,
reasonable encoding of input, implementation details.

- Nice closure property: Plug in a poly-time alg. into
another poly-time alg. —> poly-time

- Big exponents don't really arise.

- If it does arise, usually can be brought down.



* Polynomial-time.

In theory: Polynomial time Efficient.

Otherwise Not efficient.

- Summary: Poly-time vs not poly-time
is a qualitative difference, not a quantitative one.



poll.cs251.com

What is the running time in terms of the input length?

def 1sSPrime(N):
if (N < 2):
return False
for factor in range(2, N):
if (N % factor == 0):
return False
return Irue



http://poll.cs251.com

Poll Answer

Algorithms on numbers involve BIG numbers.

3618502/7838666131106986593281521497110455743021169260358536775932020762686101
7237846234873269807102970128874356021481964232857782295671675021393065473695
3943653222082116941587830769649826310589717739181525033220266350650989268038
3194839273881505432422077179121838888281996148408052302196889866637200606252
65013109649264/752050900039841761220587111645679465590449716836044240/76996342
718304654479802116829/013490774140090476348290671822743961203698142307099664
345513341463761682442386010/889/741058131271306226214208636008224651510961018

This is still smalll  Imagine having thousands of digits.



Poll Answer

B — 5693030020523999993479642904621911725098567020556258102766251487234031094429

B ~5.7x 10" (5.7 quattorvigintillion )
len(B) = 251

o An algorithm repeating B times is
practically uncomputable.

len(B) = # bits to write B
len(B) ~ log, B



Poll Answer

def 1sSPrime(N):
if (N <2):
return False
for factor in range(2, N):
if (N % tfactor == 0):
return False
return True

# Iterations: =~ N

DANGER

exponential in

_nlog, N _ Alenwv) _ An
N =27% =27 =2 input length



CS251 computational model for complexity analysis



o The model matters if you are interested in

more retined complexity analysis.



CS251 computational model for complexity analysis

The Random-Access Machine (RAM) model

Good combination of reality & simplicity.

+ -/ * < > etc. e.g. 15*251 takes 1 step

for "small numbers"

memory access e.g. A[94] takes 1 step

Small number: Bounded by a polynomial in input length.

Large number: Not small.

o Arithmetic operations/comparisons take 1 step

only if the numbers are small.



Example: Are the numbers small or large?

Small number: Bounded by a polynomial in input length.

Large number: Not small.

def foo(int B): def bar(string s):
return B/+[B i=0
— while (i|<[len(s)):
print(s[i])
i =i+|1

What is the complexity of addition, multiplication, etc.
when the numbers are large?




Integer Addition

def sum(int A, int B):
fori=1 to B:
A+=1
return A

o What is the running-time of this algorithm?

DANGER



Integer Addition

3618502/7/886661311069865932815214971104 A
+ 65743021169260358536775932020762686101 B

1019280490559216696066418648359/77657205 C

# steps to produce C is O(n)



Integer Multiplication

s

361850278866613110698659328152149/71104

X 5932020762686101

) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.04
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9,.9.9.04
) 9,9,9,9,9,9,9,9,9.9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9.9.9,.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.04
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9,.9.9.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9.9.9,9.9,.94
) 9,9,9,9,9,9,9,9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,9.9,.9.9,.9.9.9.9,.9.9.94

21465033672205046394665135820269840445260986813/7/425504 C
# steps: O(len(A) - len(B)) = O(n?)

oy




Integer Multiplication

: Probably this is the best,
what else can you really do?

AN Y

A good algorithm designer always thinks:
HOW CAN WE DO BETTER?!?

What algorithm does Python use?



Integer Multiplication n = length of one of the numbers

a b
A= 56[78 = a- 10"+ b
B= (1234 = ¢-10"+d
c d

A-B = (a- 10" +b)-(c- 10"+ d)
= ac - 10"+ (ad + bc) - 10" + bd

Use recursion!



Integer Multiplication

a b
A= (5678 = a-10"+b
B= (1234 = ¢-10"+d
c d

A-B = (a- 10" +b)-(c- 10"+ d)
= ac - 10"+ (ad + bc) - 10" + bd
- Recursively compute ac, ad, bc, and bd.

- Do the multiplications by 10" and 10”*. — O(n)
- Do the additions. — O(n)

T(n) < 4-Tn/2) + O(n)



Level cn

cnl/?2 cnl/?2 cnl/?2 cnl/?2

1 n/2 (n/2] /2] ni2)

cn/4 an CX/ cn/4

2 (4] (n/4) (nr4] (na) e

# distinct nodes at level j: 4) } cnd)

work done per node at level j:  c(n/2) for level j

# levels: log, n

Total: Zkigozn cn2 = O(n?)




Integer Multiplication

A-B = (a- 10" +b)-(c- 10"+ d)

ac - 10" + (ad + be) - 107 + bd

-

Hmm, we don't really care about ad and bc.
We just care about their sum.

Maybe we can get away with 3 recursive calls?
\ J

@ @ci\antro.the.giraﬁe



Integer Multiplication
A-B = (a- 10" +b)-(c- 10"+ d)
= ac - 10" + (ad + bc) - 10"? + bd

(a+ b)(c+d)=ac+ ad + bc + bd

- Recursively compute: ac, bd, (a + b)(c + d)

- Then: (ad+ bc) = (a+ b)(c+d)—ac — bd

T(n) < 3-T(n/2) + O(n)

Is this better??



Level cn
O 7 Karatsuba Algorithm

cn/?2 cni2y cn/?2
1 n2 (n/2] n/2)
cn/4 cn/4] cn/4
2 [}ﬂ4j (ﬁﬁ{) [}ﬂ4j oo
# distinct nodes at level j: 3/ cn(312)
work done per node at level j:  c(n/2) for level j

# levels: log, n

Total: Zjl.igozn cn(3/2) = On'°e7)




Integer Multiplication

! Probably this is the best,
what else can you really do?

L

J

A good algorithm designer always thinks:
HOW CAN WE DO BETTER?!?



Integer Multiplication

Cut the integer into 3 parts of length n/3 each.

Replace 9 multiplications with only 5.
T(n) <5-T(n/3)+ O(n)
T(n) = O(n"*%>)

Can do T(n) = O(n'*) forany e > 0.



Integer Multiplication

Fastest known: nlogn Harvey, Hoeven
(2019)



Lessons

o 't is not easy to understand the power of algorithms.

o Always try to do better!




What is next?

- Graphs and more examples of efficient algorithms

- Polynomial time vs Exponential time



