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2 Main Questions in Theory of Computation

Computability of a problem:

Is there an algorithm to solve it?

Complexity of a problem:

Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources



Simulations  (e.g. of physical or biological systems)

- tremendous applications in science, engineering, medicine,…

Optimization problems
- arise in essentially every industry

Security, privacy, cryptography
- applications of computationally hard problems

Social good
- finding efficient ways of helping others

Artificial intelligence
list goes on 

. 

. 

.

Computational Complexity  (Practical Computability)



- How do we define computational complexity?

- What is the right level of abstraction to use?

- How do we analyze complexity?

- What can we do to better understand 
  the complexity of problems?

- What are some interesting problems to study?

Computational Complexity  (Practical Computability)



Kurt Friedrich Gödel (1906-1978)

One of the most important logicians in history.



John von Neumann (1903-1957)

- Mathematical formulation of   
  quantum mechanics.

- Founded the field of  
  game theory in mathematics.

- Created some of the first 
  general-purpose computers.



Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in 
first order predicate logic and every natural number n, allows one to decide if 
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the 
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The 
question is how fast φ(n) grows for an optimal machine. One can show that  
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this 
would have consequences of the greatest importance. Namely, it would obviously 
mean that in spite of the undecidability of the Entscheidungsproblem, the mental 
work of a mathematician concerning Yes-or-No questions could be completely 
replaced by a machine. After all, one would simply have to choose the natural 
number n so large that when the machine does not deliver a result, it makes no 
sense to think more about the problem. Now it seems to me, however, to be 
completely within the realm of possibility that φ(n) grows that slowly.
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This is the first formalization of the P vs NP problem.



Is undecidability a real issue??



But are they practically computable?

Yes, the following (and many more) is uncomputable:
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What really matters is computational complexity.!



Part 1 of CS251:

Part 2 of CS251:

Understand the divide between  
computable and uncomputable.

Understand the divide between  
practically computable and practically uncomputable.



“The (asymptotic) running time complexity  
  of algorithm A is .”O(n2)

What is the meaning of:



•  Asymptotic analysis and the Big-O notation.

•  Worst-case analysis.

Great Ideas in Complexity Analysis

•  Polynomial-time.

The (worst-case) running time of an algorithm  is a functionA

TA(n) =
inputs   

of length 
x

n

max # steps A(x) takes.



•  Worst-case analysis.

BUT worst-case analysis has its advantages:

- An ironclad guarantee.

- Hard to define “typical” instances.

We are not dogmatic about it.

Can study “average-case” (random inputs)

…
Can try to look at “typical” instances.

- Random instances are often not representative.

- Often much easier to analyze.

Why worst-case?
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•  Asymptotic analysis and the Big-O notation.

T (n) =
1

2
n2 +

3

2
n+ 1.

Analogous to “too many significant digits”.

“Sweet spot” of Big-O

- coarse enough to suppress details like 
  programming language, compiler, architecture,…

- sharp enough to make comparisons between 
  different algorithmic approaches.
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of length 
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max # steps A(x) takes.



•  Polynomial-time.

In practice:

O(n)

O(n log n)

O(n2)

O(n3)

O(n5)

O(n100)

Awesome! Like really awesome!

Great!

Kind of efficient.

Barely efficient. (???)

Would not call it efficient.

Definitely not efficient!O(n10)

WTF?

 for some constant .O(nk) k



•  Polynomial-time.

In theory: Polynomial time Efficient.

Otherwise Not efficient.

-  Poly-time is not meant to mean “efficient in practice”

-  It means “You have done something extraordinarily better  
   than brute force search.”

-  Poly-time: mathematical insight into a problem’s structure.

-  If you show, say Factoring Problem, has running time                  
                  ,  it will be the best result in CS history. O(n100)



•  Polynomial-time.

In theory: Polynomial time 

Otherwise

Efficient.

Not efficient.

-  Robust to notions:  
   elementary step, what model we use,  
   reasonable encoding of input, implementation details.

-  Nice closure property:  Plug in a poly-time alg. into  
   another poly-time alg. —> poly-time

-  Big exponents don’t really arise.

-  If it does arise, usually can be brought down.



•  Polynomial-time.

In theory: Polynomial time 

Otherwise

Efficient.

Not efficient.

-  Summary:  Poly-time vs not poly-time 
   is a qualitative difference, not a quantitative one.



poll.cs251.com

What is the running time in terms of the input length?

def isPrime(N):
    if (N < 2):
        return False
    for factor in range(2, N):
        if (N % factor == 0):
            return False
    return True

http://poll.cs251.com


Poll Answer

3618502788666131106986593281521497110455743021169260358536775932020762686101 
7237846234873269807102970128874356021481964232857782295671675021393065473695 
3943653222082116941587830769649826310589717739181525033220266350650989268038 
3194839273881505432422077179121838888281996148408052302196889866637200606252 
6501310964926475205090003984176122058711164567946559044971683604424076996342 
7183046544798021168297013490774140090476348290671822743961203698142307099664 
3455133414637616824423860107889741058131271306226214208636008224651510961018

Algorithms on numbers involve BIG numbers.

This is still small!   Imagine having thousands of digits.



Poll Answer

5693030020523999993479642904621911725098567020556258102766251487234031094429  B =

B ⇡ 5.7⇥ 1075 ( 5.7 quattorvigintillion )

! An algorithm repeating  times is 
practically uncomputable.

B

# bits to write len(B) = B

len(B) ≈ log2 B

len(B) = 251



Poll Answer

exponential in  
input length

# iterations:  ~ ~ N

def isPrime(N):
    if (N < 2):
        return False
    for factor in range(2, N):
        if (N % factor == 0):
            return False
    return True

N = 2log2 N = 2len(N) = 2n



CS251 computational model for complexity analysis



The model matters if you are interested in  
more refined complexity analysis.!



CS251 computational model for complexity analysis
The Random-Access Machine (RAM) model
Good combination of reality & simplicity.

+ , - , / , *, <, >, etc. e.g.  15*251

memory access takes 1 stepe.g.  A[94]

Small number:  Bounded by a polynomial in input length.

Large number:  Not small.

takes 1 step
for "small numbers"

Arithmetic operations/comparisons take 1 step  
only if the numbers are small.!



Example:  Are the numbers small or large?

def foo(int B):
    return B + B

def bar(string s):
    i = 0
    while (i < len(s)):
        print(s[i])
        i = i + 1

What is the complexity of addition, multiplication, etc. 
when the numbers are large??

Small number:  Bounded by a polynomial in input length.

Large number:  Not small.



Integer Addition

def sum(int A, int B):
    for i = 1 to B:
        A += 1
    return A

What is the running-time of this algorithm??



Integer Addition

36185027886661311069865932815214971104  

65743021169260358536775932020762686101  

101928049055921669606641864835977657205  

+
A
B

C

# steps to produce  is C O(n)



Integer Multiplication
36185027886661311069865932815214971104  

5932020762686101  

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

x

214650336722050463946651358202698404452609868137425504  

A

B

C

# steps:  O(len(A) ⋅ len(B)) = O(n2)



Integer Multiplication

Probably this is the best,  
what else can you really do?

A good algorithm designer always thinks:

HOW CAN WE DO BETTER?!?

What algorithm does Python use?



Integer Multiplication

Use recursion!

5 6 7 8

1 2 3 4

A =
B =

a b

c d

= a ⋅ 10n/2 + b
= c ⋅ 10n/2 + d

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

 = length of one of the numbersn



Integer Multiplication

5 6 7 8

1 2 3 4

A =
B =

a b

c d

= a ⋅ 10n/2 + b
= c ⋅ 10n/2 + d

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

- Recursively compute , , , and .  ac ad bc bd
- Do the multiplications by  and .10n 10n/2

- Do the additions.

T(n) ≤ 4 ⋅ T(n/2) + O(n)

O(n)
O(n)



n

n/2 n/2n/2 n/2

n/4 n/4 n/4 n/4

Level
0

1

2

cn

cn/2 cn/2 cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

# distinct nodes at level : j

work done per node at level : j
# levels: 

{4 j

c(n/2j) for level j
cn2j

log2 n

Total: ∑log2 n
j=0 cn2j = O(n2)

...



Integer Multiplication

Hmm, we don't really care about  and .ad bc
We just care about their sum.

Maybe we can get away with 3 recursive calls?

@cilantro.the.giraffe

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd



Integer Multiplication

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

(a + b)(c + d) = ac + ad + bc + bd

- Recursively compute:   ac, bd, (a + b)(c + d)

- Then:  (ad + bc) = (a + b)(c + d) − ac − bd

T(n) ≤ 3 ⋅ T(n/2) + O(n)
Is this better??



n

n/2 n/2n/2

n/4 n/4 n/4

Level
0

1

2

cn

cn/2 cn/2 cn/2

cn/4 cn/4 cn/4

# distinct nodes at level : j

work done per node at level : j
# levels: 

{3j

c(n/2j) for level j
cn(3j /2j)

log2 n

Total: ∑log2 n
j=0 cn(3j /2j) = O(nlog2 3)

Karatsuba Algorithm

...



Integer Multiplication

Probably this is the best,  
what else can you really do?

A good algorithm designer always thinks:

HOW CAN WE DO BETTER?!?



Integer Multiplication

Cut the integer into 3 parts of length  each.n/3
Replace 9 multiplications with only 5.

Can do   for any T(n) = O(n1+ϵ) ϵ > 0.

T(n) ≤ 5 ⋅ T(n/3) + O(n)

T(n) = O(nlog3 5)



Integer Multiplication

Fastest known:    n log n Harvey, Hoeven
(2019)



It is not easy to understand the power of algorithms.!

Always try to do better!!

Lessons



What is next?

-  Graphs and more examples of efficient algorithms

-  Polynomial time  vs  Exponential time


