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2 Main Questions in Theory of Computation

Computability of a problem:

Is there an algorithm to solve it?

Complexity of a problem:

Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources



Simulations  (e.g. of physical or biological systems)

- tremendous applications in science, engineering, medicine,…

Optimization problems
- arise in essentially every industry

Security, privacy, cryptography
- applications of computationally hard problems

Social good
- finding efficient ways of helping others

Artificial intelligence
list goes on


.


.


.

Computational Complexity  (Practical Computability)



- How do we define computational complexity?

- What is the right level of abstraction to use?

- How do we analyze complexity?

- What can we do to better understand

  the complexity of problems?

- What are some interesting problems to study?

Computational Complexity  (Practical Computability)



Kurt Friedrich Gödel (1906-1978)

One of the most important logicians in history.



John von Neumann (1903-1957)

- Mathematical formulation of  

  quantum mechanics.

- Founded the field of 

  game theory in mathematics.

- Created some of the first

  general-purpose computers.



Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in 
first order predicate logic and every natural number n, allows one to decide if 
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the 
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The 
question is how fast φ(n) grows for an optimal machine. One can show that 

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this 
would have consequences of the greatest importance. Namely, it would obviously 
mean that in spite of the undecidability of the Entscheidungsproblem, the mental 
work of a mathematician concerning Yes-or-No questions could be completely 
replaced by a machine. After all, one would simply have to choose the natural 
number n so large that when the machine does not deliver a result, it makes no 
sense to think more about the problem. Now it seems to me, however, to be 
completely within the realm of possibility that φ(n) grows that slowly.



Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in 
first order predicate logic and every natural number n, allows one to decide if 
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the 
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The 
question is how fast φ(n) grows for an optimal machine. One can show that 

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this 
would have consequences of the greatest importance. Namely, it would obviously 
mean that in spite of the undecidability of the Entscheidungsproblem, the mental 
work of a mathematician concerning Yes-or-No questions could be completely 
replaced by a machine. After all, one would simply have to choose the natural 
number n so large that when the machine does not deliver a result, it makes no 
sense to think more about the problem. Now it seems to me, however, to be 
completely within the realm of possibility that φ(n) grows that slowly.



Gödel's letter to von Neumann (1956)

mathematical

statement F provable with 


 symbols?n

True

or


Falsen

mathematical

statement F provable?

True

or


False

ENTSCHEIDUNGSPROBLEM
UNDECIDABLE

DECIDABLE



Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in 
first order predicate logic and every natural number n, allows one to decide if 
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the 
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The 
question is how fast φ(n) grows for an optimal machine. One can show that 

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this 
would have consequences of the greatest importance. Namely, it would obviously 
mean that in spite of the undecidability of the Entscheidungsproblem, the mental 
work of a mathematician concerning Yes-or-No questions could be completely 
replaced by a machine. After all, one would simply have to choose the natural 
number n so large that when the machine does not deliver a result, it makes no 
sense to think more about the problem. Now it seems to me, however, to be 
completely within the realm of possibility that φ(n) grows that slowly.



Gödel's letter to von Neumann (1956)

the number of steps required for input Ψ(F, n) = (F, n)

a worst-case notion of

   running time

φ(n) = max
F

Ψ(F, n)

mathematical

statement F provable with 


 symbols?n

True

or


Falsen

How fast does  grow for an optimal machine?φ(n)?
asymptotic analysis



Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in 
first order predicate logic and every natural number n, allows one to decide if 
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the 
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The 
question is how fast φ(n) grows for an optimal machine. One can show that 

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this 
would have consequences of the greatest importance. Namely, it would obviously 
mean that in spite of the undecidability of the Entscheidungsproblem, the mental 
work of a mathematician concerning Yes-or-No questions could be completely 
replaced by a machine. After all, one would simply have to choose the natural 
number n so large that when the machine does not deliver a result, it makes no 
sense to think more about the problem. Now it seems to me, however, to be 
completely within the realm of possibility that φ(n) grows that slowly.



Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in 
first order predicate logic and every natural number n, allows one to decide if 
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the 
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The 
question is how fast φ(n) grows for an optimal machine. One can show that 

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this 
would have consequences of the greatest importance. Namely, it would obviously 
mean that in spite of the undecidability of the Entscheidungsproblem, the mental 
work of a mathematician concerning Yes-or-No questions could be completely 
replaced by a machine. After all, one would simply have to choose the natural 
number n so large that when the machine does not deliver a result, it makes no 
sense to think more about the problem. Now it seems to me, however, to be 
completely within the realm of possibility that φ(n) grows that slowly.



Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in 
first order predicate logic and every natural number n, allows one to decide if 
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the 
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The 
question is how fast φ(n) grows for an optimal machine. One can show that 

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this 
would have consequences of the greatest importance. Namely, it would obviously 
mean that in spite of the undecidability of the Entscheidungsproblem, the mental 
work of a mathematician concerning Yes-or-No questions could be completely 
replaced by a machine. After all, one would simply have to choose the natural 
number n so large that when the machine does not deliver a result, it makes no 
sense to think more about the problem. Now it seems to me, however, to be 
completely within the realm of possibility that φ(n) grows that slowly.

This is the first formalization of the P vs NP problem.



Is undecidability a real issue??



But are they practically computable?

Yes, the following (and many more) is uncomputable:
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What really matters is computational complexity.!



Part 1 of CS251:

Part 2 of CS251:

Understand the divide between 

computable and uncomputable.

Understand the divide between 

practically computable and practically uncomputable.



“The (asymptotic) running time complexity 

  of algorithm A is .”O(n2)

What is the meaning of:



•  Asymptotic analysis and the Big-O notation.

•  Worst-case analysis.

Great Ideas in Complexity Analysis

•  Polynomial-time.

The (worst-case) running time of an algorithm  is a functionA

TA(n) =
inputs  


of length 
x

n

max # steps A(x) takes.



•  Worst-case analysis.

BUT worst-case analysis has its advantages:

- An ironclad guarantee.

- Hard to define “typical” instances.

We are not dogmatic about it.

Can study “average-case” (random inputs)

…
Can try to look at “typical” instances.

- Random instances are often not representative.

- Often much easier to analyze.

Why worst-case?
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•  Asymptotic analysis and the Big-O notation.

T (n) =
1

2
n2 +

3

2
n+ 1.

Analogous to “too many significant digits”.

“Sweet spot” of Big-O

- coarse enough to suppress details like

  programming language, compiler, architecture,…

- sharp enough to make comparisons between

  different algorithmic approaches.
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inputs  


of length 
x

n

max # steps A(x) takes.



•  Polynomial-time.

In practice:

O(n)

O(n log n)

O(n2)

O(n3)

O(n5)

O(n100)

Awesome! Like really awesome!

Great!

Kind of efficient.

Barely efficient. (???)

Would not call it efficient.

Definitely not efficient!O(n10)

WTF?

 for some constant .O(nk) k



•  Polynomial-time.

In theory: Polynomial time Efficient.

Otherwise Not efficient.

-  Poly-time is not meant to mean “efficient in practice”

-  It means “You have done something extraordinarily better 

   than brute force search.”

-  Poly-time: mathematical insight into a problem’s structure.

-  If you show, say Factoring Problem, has running time                 

                  ,  it will be the best result in CS history. O(n100)



•  Polynomial-time.

In theory: Polynomial time 

Otherwise

Efficient.

Not efficient.

-  Robust to notions: 

   elementary step, what model we use, 

   reasonable encoding of input, implementation details.

-  Nice closure property:  Plug in a poly-time alg. into 

   another poly-time alg. —> poly-time

-  Big exponents don’t really arise.

-  If it does arise, usually can be brought down.



•  Polynomial-time.

In theory: Polynomial time 

Otherwise

Efficient.

Not efficient.

-  Summary:  Poly-time vs not poly-time

   is a qualitative difference, not a quantitative one.



poll.cs251.com

What is the running time in terms of the input length?

def isPrime(N):
    if (N < 2):
        return False
    for factor in range(2, N):
        if (N % factor == 0):
            return False
    return True

http://poll.cs251.com


Poll Answer

3618502788666131106986593281521497110455743021169260358536775932020762686101 
7237846234873269807102970128874356021481964232857782295671675021393065473695 
3943653222082116941587830769649826310589717739181525033220266350650989268038 
3194839273881505432422077179121838888281996148408052302196889866637200606252 
6501310964926475205090003984176122058711164567946559044971683604424076996342 
7183046544798021168297013490774140090476348290671822743961203698142307099664 
3455133414637616824423860107889741058131271306226214208636008224651510961018

Algorithms on numbers involve BIG numbers.

This is still small!   Imagine having thousands of digits.



Poll Answer

5693030020523999993479642904621911725098567020556258102766251487234031094429 
B =

B ⇡ 5.7⇥ 1075 ( 5.7 quattorvigintillion )

! An algorithm repeating  times is

practically uncomputable.

B

# bits to write len(B) = B

len(B) ≈ log2 B

len(B) = 251



Poll Answer

exponential in 

input length

# iterations:  ~ ~ N

def isPrime(N):
    if (N < 2):
        return False
    for factor in range(2, N):
        if (N % factor == 0):
            return False
    return True

N = 2log2 N = 2len(N) = 2n



CS251 computational model for complexity analysis



The model matters if you are interested in 

more refined complexity analysis.!



CS251 computational model for complexity analysis
The Random-Access Machine (RAM) model
Good combination of reality & simplicity.

+ , - , / , *, <, >, etc. e.g.  15*251

memory access takes 1 stepe.g.  A[94]

Small number:  Bounded by a polynomial in input length.

Large number:  Not small.

takes 1 step
for "small numbers"

Arithmetic operations/comparisons take 1 step 

only if the numbers are small.!



Example:  Are the numbers small or large?

def foo(int B):
    return B + B

def bar(string s):
    i = 0
    while (i < len(s)):
        print(s[i])
        i = i + 1

What is the complexity of addition, multiplication, etc.

when the numbers are large??

Small number:  Bounded by a polynomial in input length.

Large number:  Not small.



Integer Addition

def sum(int A, int B):
    for i = 1 to B:
        A += 1
    return A

What is the running-time of this algorithm??



Integer Addition

36185027886661311069865932815214971104 


65743021169260358536775932020762686101 


101928049055921669606641864835977657205 


+
A
B

C

# steps to produce  is C O(n)



Integer Multiplication
36185027886661311069865932815214971104 


5932020762686101 
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x

214650336722050463946651358202698404452609868137425504 


A

B

C

# steps:  O(len(A) ⋅ len(B)) = O(n2)



Integer Multiplication

Probably this is the best, 

what else can you really do?

A good algorithm designer always thinks:

HOW CAN WE DO BETTER?!?

What algorithm does Python use?



Integer Multiplication

Use recursion!

5 6 7 8

1 2 3 4

A =
B =

a b

c d

= a ⋅ 10n/2 + b
= c ⋅ 10n/2 + d

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

 = length of one of the numbersn



Integer Multiplication

5 6 7 8

1 2 3 4

A =
B =

a b

c d

= a ⋅ 10n/2 + b
= c ⋅ 10n/2 + d

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

- Recursively compute , , , and .  ac ad bc bd
- Do the multiplications by  and .10n 10n/2

- Do the additions.

T(n) ≤ 4 ⋅ T(n/2) + O(n)

O(n)
O(n)



n

n/2 n/2n/2 n/2

n/4 n/4 n/4 n/4

Level
0

1

2

cn

cn/2 cn/2 cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

# distinct nodes at level : j

work done per node at level : j
# levels: 

{4 j

c(n/2j) for level j
cn2j

log2 n

Total: ∑log2 n
j=0 cn2j = O(n2)

...



Integer Multiplication

Hmm, we don't really care about  and .ad bc
We just care about their sum.

Maybe we can get away with 3 recursive calls?

@cilantro.the.giraffe

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd



Integer Multiplication

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

(a + b)(c + d) = ac + ad + bc + bd

- Recursively compute:   ac, bd, (a + b)(c + d)

- Then:  (ad + bc) = (a + b)(c + d) − ac − bd

T(n) ≤ 3 ⋅ T(n/2) + O(n)
Is this better??



n

n/2 n/2n/2

n/4 n/4 n/4

Level
0

1

2

cn

cn/2 cn/2 cn/2

cn/4 cn/4 cn/4

# distinct nodes at level : j

work done per node at level : j
# levels: 

{3j

c(n/2j) for level j
cn(3j /2j)

log2 n

Total: ∑log2 n
j=0 cn(3j /2j) = O(nlog2 3)

Karatsuba Algorithm

...



Integer Multiplication

Probably this is the best, 

what else can you really do?

A good algorithm designer always thinks:

HOW CAN WE DO BETTER?!?



Integer Multiplication

Cut the integer into 3 parts of length  each.n/3
Replace 9 multiplications with only 5.

Can do   for any T(n) = O(n1+ϵ) ϵ > 0.

T(n) ≤ 5 ⋅ T(n/3) + O(n)

T(n) = O(nlog3 5)



Integer Multiplication

Fastest known:    n log n Harvey, Hoeven
(2019)



It is not easy to understand the power of algorithms.!

Always try to do better!!

Lessons



What is next?

-  Graphs and more examples of efficient algorithms

-  Polynomial time  vs  Exponential time


