
CS251

Computer Science
Theoretical

Great Ideas
in

Time Complexity

And the Power of Algorithms

2 Main Questions in Theory of Computation

Computability of a problem:

Is there an algorithm to solve it?

Complexity of a problem:

Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources

Simulations (e.g. of physical or biological systems)

- tremendous applications in science, engineering, medicine,…

Optimization problems
- arise in essentially every industry

Security, privacy, cryptography
- applications of computationally hard problems

Social good
- finding efficient ways of helping others

Artificial intelligence
list goes on

.

.

.

Computational Complexity (Practical Computability)

- How do we define computational complexity?

- What is the right level of abstraction to use?

- How do we analyze complexity?

- What can we do to better understand

 the complexity of problems?

- What are some interesting problems to study?

Computational Complexity (Practical Computability)

Kurt Friedrich Gödel (1906-1978)

One of the most important logicians in history.

John von Neumann (1903-1957)

- Mathematical formulation of

 quantum mechanics.

- Founded the field of

 game theory in mathematics.

- Created some of the first

 general-purpose computers.

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The
question is how fast φ(n) grows for an optimal machine. One can show that

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this
would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that φ(n) grows that slowly.

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The
question is how fast φ(n) grows for an optimal machine. One can show that

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this
would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that φ(n) grows that slowly.

Gödel's letter to von Neumann (1956)

mathematical

statement F provable with

 symbols?n

True

or

Falsen

mathematical

statement F provable?

True

or

False

ENTSCHEIDUNGSPROBLEM
UNDECIDABLE

DECIDABLE

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The
question is how fast φ(n) grows for an optimal machine. One can show that

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this
would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that φ(n) grows that slowly.

Gödel's letter to von Neumann (1956)

the number of steps required for input Ψ(F, n) = (F, n)

a worst-case notion of

 running time

φ(n) = max
F

Ψ(F, n)

mathematical

statement F provable with

 symbols?n

True

or

Falsen

How fast does grow for an optimal machine?φ(n)?
asymptotic analysis

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The
question is how fast φ(n) grows for an optimal machine. One can show that

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this
would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that φ(n) grows that slowly.

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The
question is how fast φ(n) grows for an optimal machine. One can show that

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this
would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that φ(n) grows that slowly.

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in
first order predicate logic and every natural number n, allows one to decide if
there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the
number of steps the machine requires for this and let φ(n) = max_F ψ(F,n). The
question is how fast φ(n) grows for an optimal machine. One can show that

φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this
would have consequences of the greatest importance. Namely, it would obviously
mean that in spite of the undecidability of the Entscheidungsproblem, the mental
work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be
completely within the realm of possibility that φ(n) grows that slowly.

This is the first formalization of the P vs NP problem.

Is undecidability a real issue??

But are they practically computable?

Yes, the following (and many more) is uncomputable:

S provable?
True

or

False

M
halts?

True

or

Falsex

S provable with

 symbols?≤ k

True

or

Falsek

But these are computable:

M halts within

 steps?≤ k

True

or

Falsek
x

What really matters is computational complexity.!

Part 1 of CS251:

Part 2 of CS251:

Understand the divide between

computable and uncomputable.

Understand the divide between

practically computable and practically uncomputable.

“The (asymptotic) running time complexity

 of algorithm A is .”O(n2)

What is the meaning of:

• Asymptotic analysis and the Big-O notation.

• Worst-case analysis.

Great Ideas in Complexity Analysis

• Polynomial-time.

The (worst-case) running time of an algorithm is a functionA

TA(n) =
inputs

of length
x

n

max # steps A(x) takes.

• Worst-case analysis.

BUT worst-case analysis has its advantages:

- An ironclad guarantee.

- Hard to define “typical” instances.

We are not dogmatic about it.

Can study “average-case” (random inputs)

…
Can try to look at “typical” instances.

- Random instances are often not representative.

- Often much easier to analyze.

Why worst-case?

• Asymptotic analysis and the Big-O notation.

• Worst-case analysis.

Great Ideas in Complexity Analysis

• Polynomial-time.

The running time of an algorithm is a functionA

TA(n) =
inputs

of length
x

n

max # steps A(x) takes.

• Asymptotic analysis and the Big-O notation.

T (n) =
1

2
n2 +

3

2
n+ 1.

Analogous to “too many significant digits”.

“Sweet spot” of Big-O

- coarse enough to suppress details like

 programming language, compiler, architecture,…

- sharp enough to make comparisons between

 different algorithmic approaches.

• Asymptotic analysis and the Big-O notation.

• Worst-case analysis.

Great Ideas in Complexity Analysis

• Polynomial-time.

The running time of an algorithm is a functionA

TA(n) =
inputs

of length
x

n

max # steps A(x) takes.

• Polynomial-time.

In practice:

O(n)

O(n log n)

O(n2)

O(n3)

O(n5)

O(n100)

Awesome! Like really awesome!

Great!

Kind of efficient.

Barely efficient. (???)

Would not call it efficient.

Definitely not efficient!O(n10)

WTF?

 for some constant .O(nk) k

• Polynomial-time.

In theory: Polynomial time Efficient.

Otherwise Not efficient.

- Poly-time is not meant to mean “efficient in practice”

- It means “You have done something extraordinarily better

 than brute force search.”

- Poly-time: mathematical insight into a problem’s structure.

- If you show, say Factoring Problem, has running time

 , it will be the best result in CS history. O(n100)

• Polynomial-time.

In theory: Polynomial time

Otherwise

Efficient.

Not efficient.

- Robust to notions:

 elementary step, what model we use,

 reasonable encoding of input, implementation details.

- Nice closure property: Plug in a poly-time alg. into

 another poly-time alg. —> poly-time

- Big exponents don’t really arise.

- If it does arise, usually can be brought down.

• Polynomial-time.

In theory: Polynomial time

Otherwise

Efficient.

Not efficient.

- Summary: Poly-time vs not poly-time

 is a qualitative difference, not a quantitative one.

poll.cs251.com

What is the running time in terms of the input length?

def isPrime(N):
 if (N < 2):
 return False
 for factor in range(2, N):
 if (N % factor == 0):
 return False
 return True

http://poll.cs251.com

Poll Answer

3618502788666131106986593281521497110455743021169260358536775932020762686101
7237846234873269807102970128874356021481964232857782295671675021393065473695
3943653222082116941587830769649826310589717739181525033220266350650989268038
3194839273881505432422077179121838888281996148408052302196889866637200606252
6501310964926475205090003984176122058711164567946559044971683604424076996342
7183046544798021168297013490774140090476348290671822743961203698142307099664
3455133414637616824423860107889741058131271306226214208636008224651510961018

Algorithms on numbers involve BIG numbers.

This is still small! Imagine having thousands of digits.

Poll Answer

5693030020523999993479642904621911725098567020556258102766251487234031094429
B =

B ⇡ 5.7⇥ 1075 (5.7 quattorvigintillion)

! An algorithm repeating times is

practically uncomputable.

B

bits to write len(B) = B

len(B) ≈ log2 B

len(B) = 251

Poll Answer

exponential in

input length

iterations: ~ ~ N

def isPrime(N):
 if (N < 2):
 return False
 for factor in range(2, N):
 if (N % factor == 0):
 return False
 return True

N = 2log2 N = 2len(N) = 2n

CS251 computational model for complexity analysis

The model matters if you are interested in

more refined complexity analysis.!

CS251 computational model for complexity analysis
The Random-Access Machine (RAM) model
Good combination of reality & simplicity.

+ , - , / , *, <, >, etc. e.g. 15*251

memory access takes 1 stepe.g. A[94]

Small number: Bounded by a polynomial in input length.

Large number: Not small.

takes 1 step
for "small numbers"

Arithmetic operations/comparisons take 1 step

only if the numbers are small.!

Example: Are the numbers small or large?

def foo(int B):
 return B + B

def bar(string s):
 i = 0
 while (i < len(s)):
 print(s[i])
 i = i + 1

What is the complexity of addition, multiplication, etc.

when the numbers are large??

Small number: Bounded by a polynomial in input length.

Large number: Not small.

Integer Addition

def sum(int A, int B):
 for i = 1 to B:
 A += 1
 return A

What is the running-time of this algorithm??

Integer Addition

36185027886661311069865932815214971104

65743021169260358536775932020762686101

101928049055921669606641864835977657205

+
A
B

C

steps to produce is C O(n)

Integer Multiplication
36185027886661311069865932815214971104

5932020762686101

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

x

214650336722050463946651358202698404452609868137425504

A

B

C

steps: O(len(A) ⋅ len(B)) = O(n2)

Integer Multiplication

Probably this is the best,

what else can you really do?

A good algorithm designer always thinks:

HOW CAN WE DO BETTER?!?

What algorithm does Python use?

Integer Multiplication

Use recursion!

5 6 7 8

1 2 3 4

A =
B =

a b

c d

= a ⋅ 10n/2 + b
= c ⋅ 10n/2 + d

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

 = length of one of the numbersn

Integer Multiplication

5 6 7 8

1 2 3 4

A =
B =

a b

c d

= a ⋅ 10n/2 + b
= c ⋅ 10n/2 + d

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

- Recursively compute , , , and . ac ad bc bd
- Do the multiplications by and .10n 10n/2

- Do the additions.

T(n) ≤ 4 ⋅ T(n/2) + O(n)

O(n)
O(n)

n

n/2 n/2n/2 n/2

n/4 n/4 n/4 n/4

Level
0

1

2

cn

cn/2 cn/2 cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

distinct nodes at level : j

work done per node at level : j
levels:

{4 j

c(n/2j) for level j
cn2j

log2 n

Total: ∑log2 n
j=0 cn2j = O(n2)

...

Integer Multiplication

Hmm, we don't really care about and .ad bc
We just care about their sum.

Maybe we can get away with 3 recursive calls?

@cilantro.the.giraffe

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

Integer Multiplication

A ⋅ B = (a ⋅ 10n/2 + b) ⋅ (c ⋅ 10n/2 + d)
= ac ⋅ 10n + (ad + bc) ⋅ 10n/2 + bd

(a + b)(c + d) = ac + ad + bc + bd

- Recursively compute: ac, bd, (a + b)(c + d)

- Then: (ad + bc) = (a + b)(c + d) − ac − bd

T(n) ≤ 3 ⋅ T(n/2) + O(n)
Is this better??

n

n/2 n/2n/2

n/4 n/4 n/4

Level
0

1

2

cn

cn/2 cn/2 cn/2

cn/4 cn/4 cn/4

distinct nodes at level : j

work done per node at level : j
levels:

{3j

c(n/2j) for level j
cn(3j /2j)

log2 n

Total: ∑log2 n
j=0 cn(3j /2j) = O(nlog2 3)

Karatsuba Algorithm

...

Integer Multiplication

Probably this is the best,

what else can you really do?

A good algorithm designer always thinks:

HOW CAN WE DO BETTER?!?

Integer Multiplication

Cut the integer into 3 parts of length each.n/3
Replace 9 multiplications with only 5.

Can do for any T(n) = O(n1+ϵ) ϵ > 0.

T(n) ≤ 5 ⋅ T(n/3) + O(n)

T(n) = O(nlog3 5)

Integer Multiplication

Fastest known: n log n Harvey, Hoeven
(2019)

It is not easy to understand the power of algorithms.!

Always try to do better!!

Lessons

What is next?

- Graphs and more examples of efficient algorithms

- Polynomial time vs Exponential time

