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Why graphs??

Why now??



Facebook



Enemybook

Enemybook remedies the one-sided perspective of Facebook, by allowing you to 
manage enemies as well as friends. With Enemybook you can add people as 
Facebook enemies, specify why they are your enemies, notify your enemies, 
see who lists you as an enemy, and even become friends with the 
enemies of your enemies.

Kevin Matulef



Enemybook



Zachary Karate Club



Zachary Karate Club CLUB

networkkarate.tumblr.com



Google - Page Rank

Larry Page

Sergey Brin

1998 paper



Google Maps



Kidney Exchange



Kidney Exchange



Kidney Exchange

UNOS pool, Dec 
2010 [Courtesy 
John Dickerson, 

CMU] 

Vertices = 
patient-donor 
pairs, edges = 
compatibility 

Tuomas Sandholm
(CMU prof.)

US national kidney exchange program



CS Life Lesson

If your problem has a graph, great!!!

If not, try to make it have a graph.



(A hundred) definitions and basic properties

What is a graph?



Types of Graphs

Simple
Undirected
Graph

Directed
Graph Multigraph

v1

v2

v3v4

v1

v2

v3v4

v1

v2

v3v4



Formal Definition  (Simple Undirected Graph)

A (simple undirected) graph  is a tuple  whereG (V, E)

-  is a finite set called the set of vertices (or nodes),V
-  is a set called the set of edges such thatE

every element of  is  for distinct .E {u, v} u, v ∈ V

Example:

V = {v1, v2, v3, v4, v5, v6}

E = {{v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}, {v5, v6}}



Formal Definition  (Simple Undirected Graph)
Example:

V = {v1, v2, v3, v4, v5, v6}

E = {{v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}, {v5, v6}}

Graphs can be drawn:

v1

v2 v3

v4

v6

v5



Formal Definition  (Simple Undirected Graph)
Example:

V = {v1, v2, v3, v4, v5, v6}

E = {{v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}, {v5, v6}}

v1

v2 v3

v4

v6

v5

Adjacency Matrix Representation:

0

BBBBBB@

0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA

v1
v2
v3
v4
v5
v6

v1 v2 v3 v4 v5 v6



Almost always:

n =  number of vertices in the graph,  |V |

m =  number of edges, |E |



Edge Cases
Is it possible that ?E = ∅

Is it possible that ?V = ∅

6 “isolated” vertices.

v1 v2 v3

v4 v5 v6



The Null Graph



The Null Graph



Other Definitions Related to Graphs



Is it possible to have a party with 251 people in which 
everyone is friends with exactly 5 other people in the party?

Is it possible to have a graph with 251 vertices in which 
each vertex is adjacent to exactly 5 other vertices?

1st Challenge



Suppose  is an edge.e = {u, v}

We say:

 and  are adjacentu v

 is a neighbor of u v

 is a neighbor of v u

 and  are endpoints of u v e

 and  are incident on u v e

Terminology:  Neighbor



For ,  the neighborhood of  is defined asv ∈ V v

Terminology:  Neighborhood

.N(v) = {u ∈ V : {v, u} ∈ E}

v1

v2

v5

v4v3

N(v1) =

N(v3) =

N(v5) =

{v2, v3}

{v1, v2, v4}

∅



For ,  the degree of  is defined asv ∈ V v

Terminology:  Degree

.deg(v) = |N(v) |

v1

v2

v5

v4v3

deg(v1) = 2

deg(v3) = 3

deg(v5) = 0

A graph is called d-regular if for all .v ∈ V, deg(v) = d



v1

v2

v5

v4v3

Lemma:  Let  be a graph. Then,
G = (V, E)

Handshake Lemma

.∑
v∈V

deg(v) = 2m

Proof: Place tokens on edges:
- each vertex puts a token 

on each edge it is incident to.

Observations:
- vertex  puts  tokens.v deg(v)
- each edge gets 2 tokens.



Lemma:  Let  be a graph. Then,
G = (V, E)

Handshake Lemma

.∑
v∈V

deg(v) = 2m

Proof (continued):

v1

v2

v5

v4v3

Count the total # tokens:

1st way:

2nd way:

∑
v∈V

deg(v)

2m



2m = 2000000000000

=) on average, people have 2000 friends.

m = 1000000000000 n = 1000000000

=
P

v2V deg(v)
🤔



poll.cs251.com

Is it possible to have a graph with 251 vertices in which each 
vertex is adjacent to exactly 5 other vertices?

http://poll.cs251.com


We have  computers that we want to connect.n

We can put a link between any two computers,

but the links are expensive.

What is the least number of edges needed to connect

 vertices?n

What is the least number of links we can use?

2nd Challenge



A walk in a graph  is a sequence of verticesG = (V, E)

such that  for all .  {ui−1, ui} ∈ E i ∈ {1,2,…, k}

This is a walk (of length ) from  to .  k u0 uk

Terminology:  Walks & Paths

u0, u1, u2, …, uk (k ≥ 0)

v1

v2

v5

v4v3

(v1, v2, v3, v1, v3, v4)

is a walk from  to  

of length 5.

v1 v4



A path in a graph  is a walk with no repeated vertices.G = (V, E)

Terminology:  Walks & Paths

v1

v2

v5

v4v3

(v1, v2, v3, v1, v3, v4)

Fact: There is a path from  to  iff

there is a walk from  to .

v v′￼

v v′￼

(v1, v2, v3, v4)

“shortcut” repeated vertices



Terminology:  Circuits & Cycles
A circuit in a graph  is a walk from  to   (for some vertex ).G = (V, E) u u u

v1 v2

v3 v4

v5

(v1, v5, v2, v4, v5, v3, v1)

is a circuit



Terminology:  Circuits & Cycles
A cycle in a graph  is a circuit with no repeated vertices.G = (V, E)

v1 v2

v3 v4

v5

(v1, v3, v5, v1) is a cycle.

(length )≥ 3

(v1, v5, v3, v1) is considered the same cycle.

(v5, v1, v3, v5) is considered the same cycle.

A graph with no cycles is called acyclic.

except the start & end



Terminology:  Connected Graph
A graph is connected if there is a path between any two vertices in the graph.

It has 4 connected components:

v1

v10

v9

v4

v5

v7 v6

v2

v3

v8

This 10-vertex graph is not connected.

{v1, v9, v10} {v2, v8} {v3} {v4, v5, v6, v7}

A graph is connected iff it has 1 connected component.



Back to the Challenge
What is the least number of edges needed to connect n vertices?

n-1 edges are always sufficient

“star graph” “path graph” “something else”

n-1 edges always necessary?



Connected    ⟹ m ≥ n − 1

Theorem:  Let  be a connected graph.G = (V, E)
Then .m ≥ n − 1
Furthermore:            is acyclic.m = n − 1 ⟺ G

Proof:
Imagine the following process:

- remove all the edges of G.

- add them back one by one  (in an arbitrary order).

n isolated vertices G
n  CCs 1  CC

CC = connected

          component



Connected    ⟹ m ≥ n − 1
Proof (continued):
Consider a step of adding an edge back.

C1

C2
C3

2 possibilities:

- connects 2 CCs.
- # CCs goes down by 1.

(i) connector edge

- cannot create a new cycle.



Connected    ⟹ m ≥ n − 1
Proof (continued):
Consider a step of adding an edge back.

2 possibilities:

- connects 2 CCs.
- # CCs goes down by 1.

(i) connector edge

- cannot create a new cycle.

- an edge within a CC.
- # CCs stays the same.
- creates a new cycle.

C1

C2
C3

(ii) cycle-creator edge



Connected    ⟹ m ≥ n − 1
Proof (continued):
Consider a step of adding an edge back.

(ii) cycle-creator edge # CCs stays the same.

(i) connector edge # CCs goes down by 1.

2 possibilities:

i.e.  we must have .m ≥ n − 1
So we must add at least  edges.n − 1

If  : m = n − 1 all type (i) edges no cycles.=)
at least one type (ii) edgeIf  :m > n − 1 a cycle.=)

n  CCs n-1  CCs n-2  CCs ... 1  CC

(at least  type (i) edges)n − 1

(i) (i) (i) (i)



Trees
Some examples with 5 vertices

(i) connected

(ii) m = n − 1
(iii) acyclic

An -vertex tree is any graph with at least

2 of the following 3 properties:

n

Exercise:

If a graph has two of the properties,

it automatically has the third too.



Basic Graph Algorithms



Graph Search Algorithms

- Depth-First Search (DFS)
- Breadth-First Search (BFS)

Minimum Spanning Tree (MST) Algorithm



Minimum Spanning Tree (MST) Algorithm



Year:            1926

Place:           Brno, Moravia

Our Hero:    Otakar Boruvka

Boruvka’s pal Jindrich Saxel was working for 

West Moravian Power Plant company.

Saxel asked:   

Motivating Question

What is the least cost way to electrify southwest Moravia?





CS Life Lesson

If your problem has a graph, great!!!

If not, try to make it have a graph.



Svitavy

Vyskov

Kyjov

Hustopece

Trebic

Znojmo
Brno

8 5
10

18 1632

12 30
14

4 26

weighted graph

Graph Representation of Problem



Graph Representation of Problem

Svitavy

Vyskov

Kyjov

Hustopece

Trebic

Znojmo
Brno

8 5
10

18 1632

12 30
14

4 26

Total weight/cost:  42

weighted graph



Minimum Spanning Tree (MST) Problem

Input:  A connected graph , and a cost function . G = (V, E) c : E → ℝ+

Output:  An MST.    


Observation: The output must be a tree (i.e. connected, acyclic).

Convenient Assumption: Edges have distinct costs.

“Whether the distance from Brno

to Breclav is 50km or 50km and 1cm

is a matter of conjecture.”

Exercise:
In this case,

the MST is unique.

I.e., subset of edges with minimum total cost

       such that all vertices are connected.



Jarník-Prim Algorithm

S = vertices connected so far

T = edges in the solution so far

8 5
10

18 16
32

12 30

14

4 26

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5
10

18 16
32

12 30

14

4 26

S = {a}    (start with an arbitrary node)

T = { }

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5
10

18 16
32

12 30

14

4 26

S = {a, b}   

T = {{a, b}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5
10

18 16
32

12 30

14

4 26

S = {a, b, g}   

T = {{a, b}, {b, g}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5
10

18 16
32

12 30

14

4 26

S = {a, b, g, f}   

T = {{a, b}, {b, g}, {g, f}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5
10

18 16
32

12 30

14

4 26

S = {a, b, g, f, e}   

T = {{a, b}, {b, g}, {g, f}, {g, e}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5
10

18 16
32

12 30

14

4 26

S = {a, b, g, f, e, d}   

T = {{a, b}, {b, g}, {g, f}, {g, e}, {e, d}}

a

b

c

d

e

f
g



Jarník-Prim Algorithm

8 5
10

18 16
32

12 30

14

4 26

S = {a, b, g, f, e, d, c}   

T = {{a, b}, {b, g}, {g, f}, {g, e}, {e, d}, {b, c}}

a

b

c

d

e

f
g

Total cost:  42



Jarník-Prim Algorithm

On input a weighted & connected graph G = (V, E):

S = {w}  (for an arbitrary w in V)

T = Ø 

While  S ≠ V:

- Let {u,v} be the min cost edge such that 

  u is in S,   v is not in S.

- T = T + {u,v}

- S = S + v

Output T



Usually known as Prim’s algorithm. 
(due to a 1957 publication by Robert Prim)

First discovered by Vojtech Jarník,

who described it in a letter to Boruvka,

and later published it in 1930.

Boruvka himself had published a different 
algorithm in 1926.



Lemma (MST Cut Property): 

Correctness of Algorithm

Let  be a connected graph with distinct positive edge costs.G = (V, E)
Let     ( ,  ).S ⊂ V S ≠ ∅ S ≠ V

Let    be the cheapest edge with  ,  .e* = {u*, v*} u* ∈ S v* ∉ S

Then the MST must contain .e*

Correctness of algorithm:
Every time alg. adds an edge, 

we know it must be in MST.

S V∖S
u* v*e*



Correctness of Algorithm
Proof Idea: (proof by contradiction)

u′￼ v′￼

Let  T  be the MST.

Suppose  is not in T.e* = {u*, v*}

Pick  in T   ( .e′￼ = {u′￼, v′￼} u′￼ ∈ S, v′￼ ∈ V \S)
(  chosen carefully)e′￼

S V∖S

u* v*e*

e′￼

 c(e′￼) > c(e*)

T  = T -  +   is a spanning tree with smaller cost.* e′￼ e*

T  has  edges. * n − 1 Argue it must be connected.Why?



Race for World Record

A naïve implementation of Jarník-Prim runs in time .O(m2)

A better implementation runs in time .O(m log m)

In practice, this is pretty good!

But a good algorithm designer always thinks:

Can we do better?



Race for World Record

1984:  Fredman & Tarjan invent the “Fibonacci heap” data structure.

Running time improved from    to  .O(m log m) O(m log* m)

Tarjan

not Fredman

also not Fredman



Race for World Record

1986:  Gabow, Galil, T. Spencer, Tarjan improved the alg.

Running time improved from    to  .O(m log* m) O(m log(log* m))

Gabow Galil Tarjan & Not-Spencer



Race for World Record

1997:  Chazelle invents “soft heap” data structure.

Running time improved from    to  O(m log* m) O(m α(m) log α(m))

Bernard Chazelle

What is ??? α(m)

Damien Chazelle (writer & director)



It is known as the Inverse-Ackermann function.

log⇤(m) # times you do           to go down to 2.log

log⇤log⇤⇤(m) # times you do           to go down to 2.

log⇤⇤log⇤⇤⇤(m) # times you do           to go down to 2.

⇤↵(m) #    ’s  you need so that log⇤⇤⇤...⇤⇤⇤(m)  2

Incomprehensibly small!

Race for World Record
What is ??? α(m)



Race for World Record
2002:  Pettie & Ramachandran gave a new algorithm.

Pettie Ramachandran

They proved it is running time is  . O(optimal)

Would you like to know the running time?

So would we! It is unknown.

All we know is:  whatever it is, it’s optimal.



Next Time:  Matching Algorithms


