CS251**Great Ideas** in Theoretical Computer Science

Maximum Matchings

matching machines and jobs

 \bullet

each machine is capable of doing a subset of the jobs

Job 1

Job 2

Job n

matching professors and courses

- 15-110
- 15-112
- 15-122
- 15-150
- 15-251
- 15-259

matching rooms and courses

GHC 4401 DH 2210 GHC 5222 WEH 7500 DH 2315

- 15-110
- 15-112
- 15-122
- 15-150
- 15-251

matching students and internships

Macrosoft

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

Step 1: Formulate the problem

Purpose:

- Get rid of distractions, identify the crux.
- Get a clean mathematical model (easier to reason about).
- Solutions often generalize to other settings.

CS Life Lesson

If your problem has a graph, great!!! If not, try to make it have a graph.

Bipartite Graphs

G = (V, E) is **bipartite** if:

- there exists a bipartition of V into X and Y,
- each edge connects a vertex in X to a vertex in Y.

Bipartite Graphs

Given a graph G = (V, E), we can ask, is it bipartite?

Is this bipartite?

Poll Answer

<u>k-colorable graph</u>: Can color the vertices with **k colors** so that no edge's endpoints get the same color.

Characterization of Bipartite Graphs

An obstruction for being bipartite:

Contains a cycle of odd length.

Is this the only type of obstruction?

Theorem: A graph G = (V, E) is bipartite if and only if it contains no cycles of odd length.

G is bipartite iff G contains no odd-length cycles.

If G has an odd-length cycle, then it is not 2-colorable.

G is 2-colorable iff G contains no odd-length cycles.

If G has no odd-length cycle, then it is 2-colorable.

Strategy:

- Present a proper 2-coloring of the graph.
- Can assume the graph is connected. (we can 2-color each connected component separately)

G is 2-colorable iff G contains no odd-length cycles.

Proof G is 2-colorable iff G co

If G has no odd-length cycle, then it is 2-colorable.

Distance from root

G is 2-colorable iff G contains no odd-length cycles.

If G has no odd-length cycle, then it is 2-colorable.

Distance from root

If G has no odd-length cycle, then it is 2-colorable.

Distance from root

Can there be an edge whose endpoints are colored the same?

If G has no odd-length cycle, then it is 2-colorable.

Distance from root

Can there be an edge whose endpoints are colored the same?

Distance from root

Can there be an edge whose endpoints are colored the same?

If G has no odd-length cycle, then it is 2-colorable.

Distance from root

Can there be an edge whose endpoints are colored the same?

If G has no odd-length cycle, then it is 2-colorable.

Distance from root

Bipartite Graphs

Often we write the bipartition explicitly:

G = (X, Y, E)

Bipartite Graphs

Great at modeling relations between two distinct classes of objects.

Examples:

X =machines, Y =jobs An edge $\{x, y\}$ means x is capable of doing y.

X = professors, Y = coursesAn edge $\{x, y\}$ means x can teach y.

X =students, Y =jobs

An edge {x, y} means x and y are interested in each other.

Often, we are interested in finding a matching in a graph.

Matching:

Often, we are interested in finding a matching in a graph.

Matching:

Often, we are interested in finding a matching in a graph.

Matching:

Often, we are interested in finding a matching in a graph.

Matching:

Often, we are interested in finding a matching in a graph.

Matching:

Often, we are interested in finding a **matching** in a graph.

Maximum matching:

A matching with largest number of edges. (among all possible matchings)

Often, we are interested in finding a **matching** in a graph.

Maximal matching:

A matching which cannot contain any more edges.

local optimum

Often, we are interested in finding a matching in a graph.

Perfect matching:

A matching that covers all vertices.

necessary condition for having a perfect matching in a bipartite graph:

Maximum matching problem

The problem we want to solve is:

Maximum matching problem

Input: A graph G = (V, E). **Output**: A maximum matching in *G*.

Maximum matching problem

Actually, we want to solve the following restriction:

Bipartite maximum matching problem

Input: A bipartite graph G = (X, Y, E). **Output**: A maximum matching in G.

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

Step 2: Is there a trivial algorithm?

Bipartite maximum matching problem

Input: A bipartite graph G = (X, Y, E). **Output**: A maximum matching in G.

Is there a (trivial) algorithm to solve this problem?

Try all possible subsets of the edges. **Running time:** $\Omega(2^m)$

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

1st Attempt: What if we picked edges "greedily"?

maximal matching

but not maximum

Is there a way to get out of this local optimum?

What is interesting about the path 4 - 8 - 2 - 5 - 1 - 7?

1st Attempt: What if we picked edges "greedily"?

maximal matching

but not maximum

1st Attempt: What if we picked edges "greedily"?

maximal matching

but not maximum

Is there a way to get out of this local optimum?

What is interesting about the path 5 - 1 - 6 - 3?

1st Attempt: What if we picked edges "greedily"?

maximal matching

but not maximum

1st Attempt: What if we picked edges "greedily"?

maximal matching

but not maximum

1st Attempt: What if we picked edges "greedily"?

maximal matching

but not maximum

Now same as previous example! Do the same to find the maximum matching.

Let M be some matching.

Definition: An **alternating path** with respect to **M** is a path such that edges in the path alternate between being in M and not being in M.

Definition: An augmenting path with respect to M is an alternating path such that the first and last vertices are **not** matched by **M**.

augmenting path \implies can obtain a bigger matching.

augmenting path \implies can obtain a bigger matching.

An augmenting path

- need **not** contain
- all the edges of the matching.

Augmenting path:

4 - 8

An augmenting path need **not** contain any of the edges in the matching.

augmenting path \implies can obtain a bigger matching.

Not (!) an a 2 - 5

5 is matched!

Not (!) an augmenting path:

Characterization of Maximum Matchings

An obstruction for being a maximum matching:

There is an augmenting path.

Is this the only type of obstruction?

Theorem: A matching M is maximum if and only if there is **no** augmenting path with respect to M.

Algorithm to find maximum matching

Theorem: A matching M is maximum if and only if there is **no** augmenting path with respect to M.

Algorithm to find max matching:

- Start with a single edge as your matching M.
- Repeat until there is no augmenting path w.r.t. M:
 - Find an augmenting path with respect to M.
 - Update M according to the augmenting path.

Proof of theorem

If \exists an augmenting path w.r.t. \mathbf{M} , can find a bigger matching (i.e. M is not maximum).

Goal:

If M is not maximum, find an augmenting path w.r.t. M.

Let M^* be a matching such that $|M^*| > |M|$.

red = M $blue = M^*$ (horizontal edges)

 $S = (M^* \cup M) - (M \cap M^*)$

(will find an **augmenting path** in **S**)

Proof of theorem

red = M $blue = M^*$ (horizontal edges)

 $S = (M^* \cup M) - (M \cap M^*)$

What does **S** look like?

(i) Each vertex has degree 1 or 2. (why?) (ii) So **S** is a collection of disjoint **cycles** and **paths**. (exercise) (iii) The edges alternate **red** and **blue**. (so cycles must have even length)

(will find an **augmenting path** in **S**)

Proof of theorem

red = M

So **S** is a collection of disjoint **cycles** (even length) and **paths**. The edges alternate **red** and **blue**.

- # blue > # red in S
- # blue = # red in cycles

So \exists a path with # blue > # red.

This is an **augmenting path** with respect to **M**.

$blue = M^*$ (horizontal edges)

- $S = (M^* \cup M) (M \cap M^*)$
- (will find an **augmenting path** in **S**)

Theorem: A matching **M** is maximum if and only if there is **no** augmenting path with respect to M.

<u>Summary of proof:</u>

If there is an augmenting path, not a max matching.

If M is not maximum, $\exists M^* \text{ s.t. } |M^*| > |M|$. Can find an augmenting path w.r.t. M in the "symmetric difference" of M^* and M.

(can find a bigger matching)

Theorem: A matching M is maximum if and only if there is **no** augmenting path with respect to M.

Algorithm to find max matching:

- Start with a single edge as your matching M.
- Repeat until there is no augmenting path w.r.t. M:
 - Find an augmenting path with respect to M.
 - Update M according to the augmenting path.

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze. \bigvee

3. Ask: Is there a better algorithm? Find and analyze.

Next Time: Stable Matchings