
CS251

Computer Science
Theoretical

Great Ideas
in

Stable Matchings

2-Sided Markets

A market with 2 distinct groups of participants,
each with their own preferences.

2-Sided Markets
1.

2.

3.

4.

1. Alice
2. Bob
3. Charlie
4. David

1. Bob
2. David
3. Alice
4. Charlie

.

.

.

Other examples:
medical residents - hospitals

students - colleges

professors - colleges

Bob

Goal: "Good" Centralized Matching System
What can go wrong?

Alice

Bob

Charlie

David

Macrosoft

Moogle

Umbrella

KLG

Suppose: Macrosoft gets matched with Alice.
 Umbrella gets matched with Charlie.

But: Macrosoft prefers Charlie over Alice.
 Charlie prefers Macrosoft over Umbrella.

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

4. Reflect: Upshots? Downsides? Improvements?

Formalizing the problem
An instance of the problem can be represented as a
complete bipartite graph

Goal: Find a stable matching.

+ preference list of each node.

[e,f,h,g]

[g,e,h,f]

[e,h,f,g]

[e,f,g,h]

[a,b,c,d]

[d,c,b,a]

[a,b,c,d]

[a,b,c,d]

X Y
a

b

c

d

e

f

g

h

|X| = |Y | = n

Formalizing the problem
What is a stable matching?

1. It is a perfect matching.

2. Does not contain an unstable pair.
(an unmatched pair (x, y)
 who both prefer each other over their current partners.)

X Y

a

b

e

f

[a,b]

[a,b]

[e,f]

[e,f]

unstable pair
(a, e)

Formalizing the problem
What is a stable matching?

X Y

a

b

e

f

[a,b]

[a,b]

[e,f]

[e,f]

1. It is a perfect matching.

2. Does not contain an unstable pair.
(an unmatched pair (x, y)
 who both prefer each other over their current partners.)

stable matching

Formalizing the problem
An instance of the problem can be represented as a
complete bipartite graph

Goal: Find a stable matching.

+ preference list of each node.

[e,f,h,g]

[g,e,h,f]

[e,h,f,g]

[e,f,g,h]

[a,b,c,d]

[d,c,b,a]

[a,b,c,d]

[a,b,c,d]

X Y
a

b

c

d

e

f

g

h

Is it always guaranteed to exist??

A variant

a

b

c

d

[c,b,d]

[a,c,d]

[b,a,d]

[a,c,b]

Roommate Problem (non-bipartite version)

Is there a stable matching?
(perfect matching with no unstable pair)

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

4. Reflect: Upshots? Downsides? Improvements?

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

4. Reflect: Upshots? Downsides? Improvements?

Stable matching: Is there a trivial algorithm?

Try all possible perfect matchings, check if it is stable.

Trivial algorithm:

perfect matchings in terms :n = |X |

[e,f,h,g]

[g,e,h,f]

[e,h,f,g]

[e,f,g,h]

[a,b,c,d]

[d,c,b,a]

[a,b,c,d]

[a,b,c,d]

X Y
a

b

c

d

e

f

g

h

n!

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

4. Reflect: Upshots? Downsides? Improvements?

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

4. Reflect: Upshots? Downsides? Improvements?

Gale-Shapley Proposal Algorithm

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

#FeelTheBern
Trevor

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

whatever

 X Y
1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

The Gale-Shapley proposal algorithm

Cool, but does it work correctly?
- Does it always terminate?

- Does it always find a stable matching?

While there is an unmatched company x:

- Let y be the highest ranked student in x's list
 to whom x has not proposed yet.

- If y is unmatched, or y prefers x over her current match:

- Match x and y.
 (The previous match of y is now unmatched.)

(Does a stable matching always exist?)

Gale-Shapley algorithm analysis

1. Number of iterations is at most . n2

3 things to show:

2. The algorithm terminates with a perfect matching.

3. The matching has no unstable pairs.

A constructive proof that a stable matching always exists.

Theorem: The Gale-Shapley algorithm always
terminates with a stable matching after at most

 iterations.n2

Gale-Shapley algorithm analysis

No company proposes to a student more than once.

iterations = # proposals

1. Number of iterations is at most . n2

proposals ≤ n2

Gale-Shapley algorithm analysis

2nd implication:

True since # companies = # students.

A company x* is not matched

All companies must be matched.=)
All students must be matched=)

Contradiction

2. The algorithm terminates with a perfect matching.

AFSOC we don't have a perfect matching:

Contradiction

Gale-Shapley algorithm analysis

A company x* is not matched

All companies must be matched.=)
All students must be matched=)

2. The algorithm terminates with a perfect matching.

AFSOC we don't have a perfect matching:

1st implication:

A company x* got rejected by every student:

case1: student was already matched, or

case2: student got a better offer and upgraded

Observe: Once a student is matched, she stays matched.

Either way, student was matched at some point.

Gale-Shapley algorithm analysis
3. The matching has no unstable pairs.

Case 1: x never proposed to y

Case 2: x proposed to y
by (i), x prefers y’ over y

y rejected x =)

Consider any unmatched (x, y). WTS: it cannot be unstable.

"Improvement" Principle:
 (i) A company can only go down in its preference list.
 (ii) A student can only go up in her preference list.

Unstable pair:
 (x, y) unmatched
 but they both prefer each other.

by (ii), y prefers x’ over x

x proposed to y’ =)

x

x’

y’

y

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

4. Reflect: Upshots? Downsides? Improvements?

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm? Find and analyze.

3. Ask: Is there a better algorithm? Find and analyze.

4. Reflect: Upshots? Downsides? Improvements?

Further questions

Theorem: The Gale-Shapley algorithm always
terminates with a stable matching after at most

 iterations.n2

Does the order of how we pick companies matter?

Would it lead to different matchings??

Does it favor companies or students or neither?

Is the algorithm "fair"??

Further questions

best(x) = highest ranked valid partner of x

Company x and student y are valid partners
if there is a stable matching in which they are matched.

a
b

e
f

c
d

g
h

a
b

e
f

c
d

g
h

a
b

e
f

c
d

g
h

stable
matching 1

stable
matching 2

stable
matching 3

Further questions

Theorem: The Gale-Shapley algorithm returns

(x, best(x)) : x .{ ∈ X}

Not at all obvious this would be a matching,
let alone a stable matching!N

The order in which companies propose doesn't matter.N

Proof
Gale-Shapley Algorithm

a

b

g

h

c i

j

e k

[..,..,..,..,..]

[..,..,..,..,..]

[..,..,..,..,..]

[..,..,..,..,..]

[..,..,..,..,..]

n n

n

n n n

n n

n n n

v

v

v

v

v

d

n = non-valid partner v = valid partner

AFSOC, Gale-Shapley does not match x with best(x).

Consider the first time an x gets rejected by a valid partner y.

Proof

a

b

g

h

c

j

e k

[..,..,..,..,..]

[..,..,..,..,..]

[..,..,..,..,..]

[..,..,..,..,..]

n n

n

n n n

n n n

v

v

v

v

Gale-Shapley Algorithm
n = non-valid partner v = valid partner

AFSOC, Gale-Shapley does not match x with best(x).

[..,..,..,..,..]n n y x

y

Consider the first time an x gets rejected by a valid partner y.

Proof

a

b

g

h

j

e k

[..,..,..,..,..]

[..,..,..,..,..]

[..,..,..,..,..]

[..,..,..,..,..]

n n

n

n n n

n n n

v

v

v

v

Gale-Shapley Algorithm
n = non-valid partner v = valid partner

AFSOC, Gale-Shapley does not match x with best(x).

[..,..,..,..,..]n n y x

y

Consider the first time an x gets rejected by a valid partner y.

Suppose x' is the reason for the rejection.

x'

Another Stable Matching

x

y [..,x',..,x,..]x'

y'

[..,y',..,y,..]

Proof

a

b

g

h

y

j

e k

[..,..,..,..,..]

[..,..,..,..,..]

[..,..,..,..,..]

[..,..,..,..,..]

n n

n

n n

n n n

v

v

y

v

Consider the first time an x gets rejected by a valid partner y.

Gale-Shapley Algorithm

Suppose x' is the reason for the rejection.

x

x'

x

Another Stable Matching

y [..,x',..,x,..]x'

y'

[..,y',..,y,..][..,y',..,y,..]

Then x' got rejected by a valid partner y', before x got rejected by y.

n = non-valid partner v = valid partner

AFSOC, Gale-Shapley does not match x with best(x).

Further questions

worst(y) = lowest ranked valid partner of y

Theorem: The Gale-Shapley algorithm returns

(worst(y), y) : y .{ ∈ Y}

Exercise

Further questions

Can players lie to improve their matches?

"Incentive Compatibility"?

Roth's Theorem:
No matter what algorithm you use,
there is always going to be incentive to lie.

Real-world applications

Variants of the Gale-Shapley algorithm are used for:

- matching medical students and hospitals

- matching students to high schools (e.g. in New York)

- matching users to servers

...

- matching students to universities (e.g. in Hungary)

The Gale-Shapley Proposal Algorithm (1962)

Nobel Prize in Economics 2012

"for the theory of stable allocations and the practice of market design."

