
CS251

Computer Science
Theoretical

Great Ideas
in

Limits of Efficient Computation:
P vs NP

We have a decent understanding of computable vs uncomputable.

computable uncomputable

matrix
multiplication

MST

max matching

shortest path

testing primality

…

ACCEPTSTM

SATTM

NEQTM

Entscheidungsproblem

HALTSTM

…

NEW GOAL: Understand the divide between poly-time and not poly-time

poly-time solvable exp-time solvable

matrix
multiplication

MST

max matching

shortest path

testing primality

…

scheduling

TSP

Hamiltonian cycle

Pokémon

subset-sum

…

best we can say:

Why poly-time?

Poly-time: The right level of abstraction!

Decidable problems

?

Complexity class for poly-time
The set of languages that can be solved in

 steps for some constant .O(nk) k
P :

P

Exponential running time examples
Bounded Entscheidungsproblem

Given a mathematical statement and an integer ,
determine if has a proof of length at most .

S k
S k

Brute Force Search:
Try every possible string of length at most ,
and check if it corresponds to a valid proof of .

k
S

N Verifying if a given string is a correct proof is easy.

Exponential running time examples

Given a list of integers, determine if there is a subset of
the integers that sum to 0.

-3 -2 7 99 5 14

Subset Sum Problem

Exponential running time examples

Given a list of integers, determine if there is a subset of
the integers that sum to 0.

Subset Sum Problem

-3 -2 7 99 5 14

Brute Force Search:
Try every possible subset and see if it sums to 0.

N Verifying if a given subset sums to 0 is easy.

Exponential running time examples
Boolean Satisfiability Problem (SAT)
Given a Boolean propositional formula
 e.g.
determine if it is satisfiable?

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x3 ∧ x4) ∨ x3

N Verifying if a given truth assignment
makes the formula True is easy.

Brute Force Search:
Try every possible truth assignment to the variables.
Evaluate the formula to see the output.

Exponential running time examples

Input induces a "possible solutions space"x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.

.

.

.

.

.
.

.

u

Exponential running time examples
Traveling Salesperson Problem (TSP)

Is there an order in which you can visit the cities
so that ticket cost is < $15000?

Brute Force Search:
Try every possible order and compute the cost.

N Verifying if a given tour has the desired cost is easy.

Exponential running time examples
Sudoku Problem
Given a partially filled by sudoku board,
determine if there is a solution.

n n

Exponential running time examples
Sudoku Problem
Given a partially filled by sudoku board,
determine if there is a solution.

n n

Brute Force Search:
Try every possible way of filling the empty cells
and check if it is valid.

N Verifying if a given solution is correct is easy.

Exponential running time examples
Scheduling Problem

Given n students, m courses, k time slots.

Brute Force Search:
Try every possible way of scheduling the final exams.

N Verifying if a given solution is correct is easy.

Can we schedule final exams so that no student has a conflict?
Each student is taking a subset of the courses.

Exponential running time examples

And many many many others in

... with humongous applications.

math, physics, chemistry, biology, medicine, economics,
artificial intelligence, cryptography, all sorts of engineering,...

In our quest to understand efficient computation,
(and life, the universe, and everything)

we come across:

Biggest open problem in Computer Science.

One of the biggest open problems in Mathematics.

P vs NP problem

"Can creativity be automated?"

The P vs NP question is the following:

Can the Sudoku problem be solved in polynomial time?

The P vs NP question is the following:

Can the Subset Sum problem be solved in poly-time?

-3 -2 7 99 5 14

Can TSP be solved in poly-time?

The P vs NP question is the following:

Can SAT be solved in poly-time?

(x1 ^ ¬x2) _ (¬x1 ^ x3 ^ x4) _ x3

The P vs NP question is the following:

Can Bounded Entscheidungsproblem
be solved in poly-time?

The P vs NP question is the following:

Wut?!?

Let's start from the beginning...

Identifying and dealing with intractable problems

poly-time
algs.

After decades of research and billions of $$$ of funding,
no poly-time algs for:

Subset Sum, SAT, TSP, Sudoku, …

Can we prove there is no poly-time algorithm??

(A More Modest) Goal
Find evidence these problems are computationally hard

(i.e., they are not in P).

Revisiting reductions

A way to compare "difficulty" of languages/problems.

differs based on context

 poly-time decidable poly-time decidableB ⟹ A
 not poly-time decidable not poly-time decidableA ⟹ B

Want to define: to meanA ≤ B

 is no harder than A B (with respect to poly-time decidability).

Revisiting reductions

Construct poly-time deciding
that uses a "black-box" subroutine for .

MA A
MB B

x
y MB

MA
you want to specify

the orange part

We write if you can do the following:A ≤P B

 poly-time decidable poly-time decidableB ⟹ A
 not poly-time decidable not poly-time decidableA ⟹ B

If and is tractable, then is tractable.A ≤P B B A

The 2 sides of reductions

1. Expand the landscape of tractable problems.

P PB ∈ ⟹ A ∈

If and is intractable, then is intractable.A ≤P B A B

The 2 sides of reductions

2. Expand the landscape of intractable problems.

P PA ∉ ⟹ B ∉

But we suck at showing a problem is intractable.

Is this still useful??

Gathering evidence for intractability

If we can show for many ,L ≤P A L

including some that we
think should not be in P

that would be good evidence that P. A ∉

How can we gather evidence is intractable
(using reductions)?

A?

≤P A

..

C

L

Definitions of C-hard and C-complete

 " is at least as hard as every language in C." A

C

P
≤P A

Definition: Let C be a set of languages containing P.

We say language is C-hard if for all C, .A L ∈ L ≤P A

Definitions of C-hard and C-complete

 " is a representative for hardest languages in C." A

Definition: Let C be a set of languages containing P.
We say language is C-complete if
 - is C-hard,
 - C.

A
A
A ∈

C

P

A.

≤P A
Observation:

P C = PA ∈ ⟺

Recall the goal

So what is a good choice for C ?
(if we want to show SAT, Sudoku, TSP, … are C-complete?)

Good evidence for P :A ∉
- is C-complete for a really rich/large set CA
 (a set C such that we believe C ≠ P)

Find a good choice for C
(if we want to show SAT, Sudoku, TSP, … are C-complete)

Main Goal Reduces to:

Finding the right complexity class C

C = the set of all languages

SAT is C-complete???

Try 1:

C = the set of all languages
 "decidable using Brute Force Search (BFS)"

SAT is C-complete???

Try 3:

C = the set of all decidable languages

SAT is C-complete???

Try 2:

A complexity class for BFS?
What would be a reasonable definition for:

"class of problems decidable using BFS" ?

What is common about
 SAT, Subset Sum, TSP, Sudoku, etc…?

Can be hard to find a correct solution
(solution space can be too big!)

BUT, easy to verify a given solution.

?

The complexity class NP
Super-duper Informal:
NP is a set of languages that we come across all the time
and would love to solve in poly-time.

Informal:
NP is the set of languages that can be solved efficiently with "help".

(help that you do not have to trust, and can verify)

The complexity class NP
Semi-Informal:
A language is in NP if: L

• Yes inputs/instances (i.e.) have a "simple" proof (solution).x ∈ L

proof can be verified/checked in poly-time.

Does certify/prove u
x ∈ L?

True
or

False

x
u(proof/solution)

(input)

Efficient Verifier for L

 NPL ∈

x ∈ L?
True

or
False

x(input)

Efficient Decider for L

 PL ∈

• No inputs/instances (i.e.) have no proof (solution).x ∉ L

Poll

- Subset Sum

- {0k1k : k ∈ ℕ}

- Traveling Salesperson Problem (TSP)
- SAT
- Sudoku

Which languages/problems are in NP?

- HALTS

Does certify/prove u
x ∈ L?

True
or

False

x
u(proof/solution)

(input)

Efficient Verifier for L

Formal definition of NP

Definition: A language is in NP ifL
- there is a polynomial-time TM ,V
- a constant ,k

such that for all :x ∈ Σ*
 with s.t. accepts,x ∈ L ⟹ ∃u |u | ≤ |x |k V(x, u)
, rejects.x ∉ L ⟹ ∀u V(x, u)

Does certify/prove u
x ∈ L?

True
or

False

x
u(proof/solution)

(input)

Efficient Verifier for L

Formal definition of NP

If , there is some poly-length proof that leads to accept.x ∈ L V

If , every leads to reject.x ∉ L u V

Definition: A language is in NP ifL
- there is a polynomial-time TM ,V
- a constant ,k

such that for all :x ∈ Σ*
 with s.t. accepts,x ∈ L ⟹ ∃u |u | ≤ |x |k V(x, u)
, rejects.x ∉ L ⟹ ∀u V(x, u)

Formal definition of NP

proof = solution = certificate

The following are synonyms in this context:

Definition: A language is in NP ifL
- there is a polynomial-time TM ,V
- a constant ,k

such that for all :x ∈ Σ*
 with s.t. accepts,x ∈ L ⟹ ∃u |u | ≤ |x |k V(x, u)
, rejects.x ∉ L ⟹ ∀u V(x, u)

CLIQUE is in NP

Fact: CLIQUE is in NP.

Input: where is a graph and is a positive int.⟨G, c⟩ G c

Output: True iff contains a clique of size .G c

CLIQUE = {hG, ci : G is a graph that contains a clique of size c}

1
2 3

4

5

67

8

CLIQUE is in NP - Proof
We need to show a verifier TM exists
as specified in the definition of NP.

V

- if is not an encoding of a set of size , REJECT.u S ⊆ V c

- ACCEPT

- for each pair of vertices in :S
- if the vertices are not neighbors, REJECT.

def V(⟨graph G = (V, E), natural c⟩, u) :

CLIQUE is in NP - Proof

Need to show:

1. if CLIQUE, there exists (of poly-length)x = ⟨G, c⟩ ∈ u

such that ACCEPTS.V(x, u)

2. if CLIQUE, for all , REJECTS. x = ⟨G, c⟩ ∉ u V(x, u)

3. is polynomial-time. V

2 Observations about NP

 2. This is a HYUUGE class! And contains everything in P.

1. Every decision problem in NP can be solved using BFS.

- Go through all potential proofs , and run u V(x, u) .

People expect NP contains much more than P.

NP-complete
NP

P

Find a good choice for C
(if we want to show SAT, Sudoku, TSP, … are C-complete)

Main Goal:

Coming back to our main goal
Could it be true that one of
 SAT, Subset Sum, TSP, Sudoku, etc.
is NP-complete?

NP

SAT≤P
?

P

SAT.

Is there any language that is NP-complete???

The Cook-Levin Theorem

So is in NP. (easy)𝖲𝖠𝖳

And for every in NP, .L L ≤P 𝖲𝖠𝖳

Theorem (Cook 1971, Levin 1973):
 is NP-complete.𝖲𝖠𝖳

Karp's 21 NP-complete problems

1972: "Reducibility Among Combinatorial Problems"

0-1 Integer Programming

Clique

Set Packing

Vertex Cover

Set Covering

Feedback Node Set

Feedback Arc Set

Directed Hamiltonian Cycle

Undirected Hamiltonian Cycle

3SAT Chromatic Number

Partition

Clique Cover

Exact Cover

Hitting Set

Knapsack

Steiner Tree

3-Dimensional Matching

Job Sequencing

Max Cut

Today

Thousands of problems are known to be NP-complete.

Some other "interesting" examples

Tetris
Given a sequence of Tetris pieces, and a number ,
can you clear more than lines?

k
k

Super Mario Bros
Given a Super Mario Bros level, is it completable?

How do you show a language is NP-complete?
How did Cook and Levin do it ?!?

NP

SAT
P

≤P

How did Karp do it ?!?

If SAT , then is NP-hard.≤P L L
(transitivity of)≤P!

topics of next lecture

The P vs NP Question

Good evidence for intractability?

If is NP-hard,
that seems to be good evidence that P…

A
A ∉

if you believe P ≠ NP.

Is P ≠ NP????

The P vs NP question

Pretty confident this is one of the
deepest questions we have ever asked.

After decades of research:

What do experts think?
Two polls from 2002 and 2012

respondents in 2002: 100

respondents in 2012: 152

What does NP stand for anyway?
Not Polynomial?

None Polynomial?

No Polynomial?

Nurse Practitioner?

It stands for Nondeterministic Polynomial time.

(languages decidable in polynomial time
 by a nondeterministic TM)

No Problem?

What does NP stand for anyway?
Other contenders for the name of the class:

Herculean

Formidable

Hard-boiled

PET "possibly exponential time"

"provably exponential time"

"previously exponential time"

How did Cook-Levin show SAT is NP-complete?

How do you show other problems are NP-complete??

?

