CS5251

Great Ideas

in
Theoretical

Computer Science

Limits of Efficient Computation:
P vs NP

We have a decent understanding of computable vs uncomputable.

testing primality

. Entscheidungsproblem

matrix HALT STy
multiplication
ACCEPTSTy
MST
max matching SATTM
shortest path NEQmw

- e —

computable uncomputable

NEW GOAL: Understand the divide between poly-time and not poly-time

testing primality Hamiltonian cycle

matrix hedul
multiplication p-'ccdling

MST TSP
subset-sum

max matching

/’

shortest path Pokemon

best we can say:
poly-time solvable exp-time solvable

Why poly-time?

Poly-time: The right level of abstraction!

Complexity class for poly-time

P . The set of languages that can be solved in

On") steps for some constant k.

Decidable problems

Exponential running time examples

Bounded Entscheidungsproblem

Given a mathematical statement § and an integer k,
determine it § has a proof of length at most k.

Brute Force Search:

Try every possible string of length at most &,

and check if it corresponds to a valid proof of §. Sanozh

0 Verifying if a given string is a correct proof is easy.

Exponential running time examples

Subset Sum Problem

Given a list of integers, determine if there is a subset of
the integers that sum to O.

4 1-31-2|7 (99| 5| 1

Exponential running time examples

Subset Sum Problem

Given a list of integers, determine if there is a subset of
the integers that sum to O.

4 1-31-2|7 |99 5| 1

Brute Force Search:

Try every possible subset and see it it sums to O.

DANGER

0 Verifying it a given subset sums to O is easy.

Exponential running time examples

Boolean Satisfiability Problem (SAT)

Given a Boolean propositional formula
e€.g. (.xl N\ _'X2) V (_'xl N\ .X3 A\ .X4) V .X3
determine if it is satistiable?

Brute Force Search:

Try every possible truth assignment to the variables.
Evaluate the formula to see the output.

DANGER

Verifying if a given truth assignment
makes the formula True is easy.

N

Exponential running time examples

Input x induces a "possible solutions space”

Exponential running time examples

Traveling Salesperson Problem (TSP)

s there an order in which you can visit the cities
so that ticket cost is < $150007

Brute Force Search:

Try every possible order and compute the cost. [

0 Verifying if a given tour has the desired cost is easy.

ime examples

t

Exponential runn

1JA|B|G|C|E}S|L

ing

.E.7.
A69G

IC[F
AD

~< o

EA
5 G

<[o|o)

.A.a.

DCa4 7

6

2

5

9

1

8

3

5

Given a partially tilled n by n sudoku board,

determine if there is a solution

Sudoku Problem

T oo

W N~

7

2
1

Exponential running time examples

Sudoku Problem

Given a partially tilled n by n sudoku board,
determine it there is a solution.

Brute Force Search:

Try every possible way of filling the empty cells
and check if it is valid.

DANGER

0 Verifying if a given solution is correct is easy.

Exponential running time examples

Scheduling Problem

Given n students, m courses, k time slots.
Each student is taking a subset of the courses.

Can we schedule final exams so that no student has a conflict?

Brute Force Search:

Try every possible way of scheduling the final exams.

0 Verifying if a given solution is correct is easy.

Exponential running time examples

And many many many others in

math, physics, chemistry, biology, medicine, economics,
artificial intelligence, cryptography, all sorts of engineering,...

... with humongous applications.

In our quest to understand efficient computation,
(and lite, the universe, and everything)

we Come acCross.

P vs NP problem

"Can creativity be automated?"

Biggest open problem in Computer Science.

One of the biggest open problems in Mathematics.

The P vs NP question is the following

A6 9G

C754

3 TEl

C|F

AD

7 8

=

.5.4

FC

EA

5 G

.C.A

Sl
7.

1 +

D9

.A.e.

DCa4 7

GF2A

5

3

7

2

9

1

1

9

Can the Sudoku problem be solved in polynomial time?

5

The P vs NP question is the following:

Can the Subset Sum problem be solved in poly-time?

4 1-31-2|7 (99| 5| 1

The P vs NP question is the following:

Can TSP be solved in poly-time?

The P vs NP question is the following:

Can SAT be solved in poly-time?

(x1 AN —x2) V (mx1 A3 Axyg) VX3

The P vs NP question is the following:

Can Bounded Entscheidungsproblem
be solved in poly-time?

Wut?!1?

Let's start from the beginning...

ldentifying and dealing with intractable problems

After decades of research and billions of $$$ of funding,
no poly-time algs for:

Subset Sum, SAT. TSP. Sudoku, ...

e Can we prove there is no poly-time algorithm?

poly-time
algs.

L T A 4

(A More Modest) Goal

Find evidence these problems are computationally hara

(i.e., they are not in P).

Revisiting reductions

A way to compare "difficulty" of languages/problems.

differs based on context

Want to define: A < B to mean

A is no harder than B (with respect to poly-time decidability).

B poly-time decidable = A poly-time decidable
A not poly-time decidable = B not poly-time decidable

Revisiting reductions

We write A <P B if you can do the following:
Construct poly-time M, deciding A

that uses a "black-box" subroutine My for B.
you want to specify
Y the orange part

B poly-time decidable = A poly-time decidable
A not poly-time decidable = B not poly-time decidable

The 2 sides of reductions

1. Expand the landscape of tractable problems.

f A < B and B is tractable, then A is tractable.
BeP — AeP

The 2 sides of reductions

2. Expand the landscape of intractable problems.

f A < Band A is intractable, then B is intractable.
A&EP — B&P

o But we suck at showing a problem is intractable.

s this still useful?

Gathering evidence for intractability

How can we gather evidence A is intractable
(using reductions)?

including some that we
think should not be in P

/

f we can show L <" A for many L,

that would be good evidence that A & P.

s)

oo | <P A

Definitions of C-hard and C-complete

-

Definition: Let C be a set of languages containing P.
We say language A is C-hard if forall Le C, L <" A.

"A is at least as hard as every language in C."

C - R

Definitions of C-hard and C-complete

p
Definition: Let C be a set of languages containing P.

We say language A is C-complete if
- A is C-hard,
-A € C.

"A is a representative for hardest languages in C."

Cr N
| Observation:

— ~ AeP < C=P

Recall the goal

Good evidence forA & P :

- A is C-complete for a really rich/large set C
(a set C such that we believe C # P)

So what is a good choice for C ?

(if we want to show SAT, Sudoku, TSP ... are C-complete?)

L T "4

Main Goal Reduces to:

Find a good choice for C

(if we want to show SAT, Sudoku, TSP ... are C-complete)

/ I Y N

Finding the right complexity class C
Try 1:

C = the set of all languages
SAT is C-complete???

Try 2:
C = the set of all decidable languages
SAT is C-complete???

Try 3:

C = the set of all languages
"decidable using Brute Force Search (BFS)"

SAT is C-complete???

A complexity class for BFS?

What would be a reasonable definition for:

"class of problems decidable using BFS" ?

What is common about
SAT Subset Sum, TSP. Sudoku, etc...?

Can be hard to find a correct solution
(solution space can be too big!)

BUT, easy to verify a given solution.

The complexity class NP

Super-duper Informal:

NP is a set of languages that we come across all the time
and would love to solve in poly-time.

Informal:

NP is the set of languages that can be solved efficiently with "help".

(help that you do not have to trust, and can verity)

The complexity class NP

Semi-Informal:

A language L is in NP if:

oroof can be verified/checked in poly-time.

T

* Yes inputs/instances (i.e. x € L) have a "simple" proof (solution).

* No inputs/instances (i.e. x € L) have no proof (solution).

L € NP

LeP

Efficient Verifier for L
e ™
(input) X — Does u certity/prove N TEDUrG
(proot/solution) u — x € L?) Ealse
Efficient Decider for L
g)\ True
(input) X — x€L? —> or
C y False

Poll

(input) X —

Efficient Verifier for L

-

(proot/solution) u —

_

Does u certity/prove
x€L?

~

Which languages/problems are in NP?

- Subset Sum

- Traveling Salesperson Problem (TSP)

- SAT
- Sudoku
- HALTS

- {0*1*: k € N}

—

True
or

False

Formal definition of NP

Efficient Verifier for L

(input) X —

-

(proot/solution) u —

_

Does u certity/prove
x€L?

~

—

True
or

False

- a constant k,

p
Definition: A language L isin NP if

- there is a polynomial-time TM V,

such that for all x € X*:

x¢& L = Vu, V(x, u) rejects.

x€L — Juwith |ul| < \xlk s.t. V(x, u) accepts,

Formal definition of NP

p
Definition: A language L isin NP if

- there is a polynomial-time TM V,

- a constant k,
such that for all x € 2*:
x€L — Juwith |ul| < \xlk s.t. V(x, u) accepts,

x¢& L = Vu, V(x,u) rejects.

f x € L, there is some poly-length proof that leads V to accepit.

It x & L, every u leads V to reject.

Formal definition of NP

p
Definition: A language L isin NP if

- there is a polynomial-time TM V,

- a constant k,
such that for all x € 2*:
x€L — Juwith |ul| < \xlk s.t. V(x, u) accepts,

x¢& L = Vu, V(x,u) rejects.

The following are synonyms in this context:

oroot = solution = certificate

CLIQUE is in NP

Input: (G, c¢) where G is a graph and c is a positive int.

Output: True iff G contains a clique of size c.

CLIQUE = {(G,c) : G is a graph that contains a clique of size c}

()

)

ot i
fee s eal

nmﬁ‘. Tk
il \ :t

Fact: CLIQUE is in NP.

.

CLIQUE is in NP - Proof

We need to show a veritier TM V exists
as specitied in the definition of NP.

def V((graph G = (V, E), natural ¢), u) :
- it u is not an encoding of a set S C V of size ¢, REJECT.

- for each pair of vertices in §:

- if the vertices are not neighbors, REJECT.

- ACCEPT

CLIQUE is in NP - Proof

Need to show:

1. itx = (G, c) € CLIQUE, there exists u (of poly-length)
such that V(x, u) ACCEPTS.

2. itx={(G,c) & CLIQUE, forall u, V(x,u) REJECTS.

3. Vis polynomial-time.

2 Observations about NP

1. Every decision problem in NP can be solved using BFS.

- Go through all potential proofs u, and run V(x, u).

2. Thisis a HYUUGE class! And contains everything in P.

NP - 2
KKNP—compIeteJ\
P
_ _—

People expect NP contains much more than P.

L T "4

Main Goal:

Find a good choice for C

(if we want to show SAT, Sudoku, TSP ... are C-complete)

/ I Y N

Coming back to our main goal

Could it be true that one of

SAT Subset Sum, TSP, Sudoku, etc.
is NP-complete?

(st A

<P SAT

o — J

o s there any language that is NP-complete??

The Cook-Levin Theorem

!

) \
Theorem (Cook 1971, Levin 1973):
SAT is NP-complete.

So SAT isin NP. (easy)

And for every L in NP, L <" SAT.

Karp's 21 NP-complete problems

1972: "Reducibility Among Combinatorial Problems”

0-1 Integer Programming Partition

Clique Cligue Cover

Set Packing Exact Cover

Vertex Cover Hitting Set

Set Covering Knapsack

Feedback Node Set Steiner Tree

Feedback Arc Set 3-Dimensional Matching
Directed Hamiltonian Cycle Job Sequencing
Undirected Hamiltonian Cycle Max Cut

3SAT Chromatic Number

Today

Thousands of problems are known to be NP-complete.

Some other "interesting" examples

Super Mario Bros
Given a Super Mario Bros level, is it completable?

Classic Nintendo Games are (NP-)Hard

Greg Aloupis* Erik D. Demaine' Alan Guo™

March 9, 2012

Abstract

We prove NP-hardness results for five of Nintendo’s largest video game franchises: Mario.
Donkey Kong, Legend of Zelda, Metroid, and Pokémon. Our results apply to Super Mario
Bros. 1, 3, Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda
games except Zelda II: The Adventure of Link; all Metroid games; and all Pokémon role-playing
games. For Mario and Donkey Kong, we show NP-completeness. In addition, we observe that
several games in the Zelda series are PSPACE-complete.

I Introduction

A series of recent papers have analyzed the computational complexity of playing many different
video games [1, 4, 5], yet the most well-known Nintendo games of our youth have yet to be included
among these results. In this paper, we consider some of the best-known Nintendo games of all
time—Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokémon—and prove that it is NP-
hard to play generalized versions of many games in these series. In particular, our results for Mario
apply to the NES games Super Mario Bros., Super Mario Bros.: The Lost Levels, Super Mario
Bros. 3, and Super Mario World (developed by Nintendo); our results for Donkey Kong apply
to the SNES games Donkey Kong Country 1-3 (developed by Rare Ltd.); our results for Legend
f Zelda apply to all Legend of Zelda games (developed by Nintendo) except the side-scrolling
Zelda 11: The Adventure of Link; our results for Metroid apply to all Metroid games (developed by
Nintendo); and our results for Pokémon apply to all Pokémon role-playir es (developed by
Game Freak and Creatures Inc.)

Our results are ivated in particular by tool-assisted speed runs for video games. A speed
run of a game is a play through that aims to achieve a fast completion time, usually performed by
a human. In a tool-assisted speed run, the player uses special tools, such as emulators, to allow
them to slow the game down to a frame-by-frame rate in order to achieve superhuman reflexes and
timing. In some sense, tool assistance is not cheating because the rules of the game are still obeyed

I'he resulting speed runs are impressive to watch, as the paths taken by a tool-assisted player are

*Chargé de Recherches du FNRS, Département d'Informatique, Université Libre de Bruxelles, aloupis.greg®
gmail.com. Work initiated while at Institute of Information Science, Academia Sinica.

'MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA
{edemaine, aguo}mit.edu

*Partially supported by NSF grants CCF-0820672, CCF-1065125, and CCF-6922462

YAll pr ts pany names, brand names, trademarks, and sprites are properties of their respective owners

Sprites are used here under Fair Use for the educational purpose of illustrating mathematical theorems

gadget includes an item block containing a Super Mushroom which makes Mario into Super Mario
(see Figure 2). The Super Mushroom serves two purposes: first, Super Mario is 2 tiles tall, which
prevents him from fitting into narrow horizontal corridors, a property essential to our other gadgets;
second, Super Mario is able to destroy bricks whereas normal Mario cannot. In order to force the
player to take the Super Mushroom in the beginning, we block off the Finish gadget with bricks
(see Figure 3).

Figure 2: Left: Start gadget for Mario. Right: The item block contains a Super Mushroom

o o ot
-

Figure 3: Finish gadget for Mario

Next, we implement the Variable gadget, illustrated in Figure 4. There are two entrances, one
from each literal of the previous variable (if the variable is r,, the two entrances come from r_;
and —~z4_;). Once Mario falls down, he cannot jump back onto the ledges at the top, so Mario
cannot go back to a previous variable. In particular, Mario cannot go back to the negation of the
literal he chose. To choose which value to assign to the variable, Mario may fall down either the
left passage or the right

Now we present the Clause g;\dg(-l, illustrated in Figure 5. The three entrances at the top come
from the three literals that appear 1n the clause. To unlock the clause, Mario Jumps onto a Red
Km:pu, kicks its shell duwn. which bounces and breaks all the bricks in the corridor at the hollom,
opening the path for later checking. Note that falling down is no use because Super Mario cannot
fit into the narrow corridor unless he gets hurt by the Koopa, in which case he will not be able to
reach the goal. There is not enough space for Mario to run and crouch-slide into the corridor. The
gap at the bottom of the wide corridor is so the Koopa Shell does not unlock other clauses

Finally, we implement the Crossover gadget, illustrated in Figure 6. There are four entrances/exits:
top left, top rlgh(_ bottom left, and bottom ng}n The Crossover g:ulg(-l is dt-sigmd so that, if Mario

Tetris
Given a sequence of Tetris pieces, and a number &,

can you clear more than k lines?

How do you show a language is NP-complete?

How did Cook and Levin do it ?1?

NP N
— <P SAT

_ /

How did Karp do it ?1?

o f SAT < L. then L is NP-hard.
(transitivity of <)

topics of next lecture

The P vs NP Question

Good evidence for intractability?

If A is NP-hard,
that seems to be good evidence that A & P...

|f you believe P # NP.

0 s P = NP7?77?

The P vs NP question

After decades of research:

Pretty confident this is one of the
deepest questions we have ever asked.

What do experts think?

Two polls from 2002 and 2012
respondents in 2002: 100
respondents in 2012: 152

P#NP | P=NP Ind DC DK

2002 | 61(61%) | 9(9%) | 4(4%) | 1(1%) | 22(22%)
2012 | 126 (83%) | 12 (9%) | 5 (3%) | 5 (3%) | 1(0.6%)

What does NP stand for anyway?

Not Polynomial?
None Polynomial?
No Polynomial?

No Problem?

Nurse Practitioner?

't stands tfor Nondeterministic Polynomial time.

(languages decidable in polynomial time
by a hondeterministic TM)

What does NP stand for anyway?

Other contenders for the name of the class:

Herculean

Formidable

Hard-boiled

PET "possibly exponential time”
"provably exponential time"

"previously exponential time"

o How did Cook-Levin show SAT is NP-complete?

o How do you show other problems are NP-complete?

