CS251**Great Ideas** in Theoretical Computer Science

Pvs NP, Round 2

Quick review

GOAL: Understand the divide between efficiently computable and **not** efficiently computable.

best we can say: exp-time solvable

A reality we have to deal with: We suck at proving lower bounds...

A is C-hard

A is C-complete

$A \in \mathsf{P} \iff \mathsf{C} = \mathsf{P}$

Which languages L are in NP?

- If $x \in L$, there exists a solution u (certifying $x \in L$).
- If $x \notin L$, there is no solution.
- Easy (poly-time) to verify whether a possible solution is a solution.

• Every input x induces (at most) exponentially large "possible solutions space".

Definition: A language L is in NP if - there is a polynomial-time TM V, - a constant k, such that: $x \in L \implies \exists u \text{ with } |u| \leq |x|^k \text{ s.t. } V(x, u) \text{ accepts,}$ $x \notin L \implies \forall u, V(x, u)$ rejects.

NP-hardness, NP-completeness

Cook-Levin Theorem:

A note about reductions

Cook reductions: Poly-time Turing reductions

 $A \leq^{P} B$

Solve A in poly-time using a blackbox that solves B.

Can call M_B poly(|x|) times.

B poly-time decidable \implies A poly-time decidable

Karp reductions: Poly-time mapping reductions

 $A \leq_m^P B$

Make one call to M_R . Directly use its answer as output.

<u>We must have:</u> $x \in A \iff f(x) \in B$

Karp reductions: Poly-time mapping reductions

<u>We must have:</u> $x \in A \iff f(x) \in B$

Karp reductions: Poly-time mapping reductions

To show $A \leq_m^P B$:

- 1. **Define**: $f: \Sigma^* \to \Sigma^*$.
- 2. Show: $x \in A \iff f(x) \in B$.

3. Show: f is computable in poly-time.

Cook vs Karp

Can define NP-hardness with respect to \leq^{P} . (what some courses use for simplicity)

Can define NP-hardness with respect to \leq_m^P . (what experts use)

These lead to different notions of NP-hardness.

CLIQUE reduces to IND-SET

Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. **<u>Output</u>**: True iff G contains a clique of size k.

Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. **<u>Output</u>**: True iff G contains an **independent set** of size k.

Fact: CLIQUE \leq_m^P IND-SET.

We need to:

- 1. **Define**: $f: \Sigma^* \to \Sigma^*$.
- 2. Show: $w \in CLIQUE \iff f(w) \in IND-SET$.
- 3. Show: f is computable in poly-time.

$$\langle G, k \rangle \stackrel{f}{\mapsto} \langle G', k' \rangle$$

G has a clique of size k iff G' has an ind. set of size k'

 $\langle G, k \rangle \stackrel{f}{\mapsto} \langle G', k' \rangle$

G'

G has a clique of size k iff G' has an ind. set of size k'

This is called the complement of G.

1. Define: $f: \Sigma^* \to \Sigma^*$.

def
$$f(\langle G = (V, E), k \rangle)$$
:
- Let $E' = \{\{u, v\} : u, v \in V, \{u, v\}\}$
- Return $\langle G' = (V, E'), k \rangle$.

$$\langle G, k \rangle \mapsto \langle G', k \rangle$$

Implicit type-checker: not valid encoding \mapsto a string not in IND-SET (e.g. ϵ)

$u, v\} \notin E\}.$

2. Show: $w \in CLIQUE \iff f(w) \in IND-SET$.

$w \in CLIQUE$

 $w = \langle G = (V, E), k \rangle$ and G has a clique $S \subseteq V$ of size k.

In G' = (V, E'), $S \subseteq V$ is an ind. set of size k.

 \Leftrightarrow

 $\quad \Longleftrightarrow \quad$

 $f(w) = \langle G' = (V, E'), k \rangle \in \mathsf{IND-SET}.$

3. Show: f is computable in poly-time.

Creating E', and therefore G', can be done in poly-time.

Poll Question

kCOL Problem

Input: A graph G.

<u>Output:</u> Yes/True if it is possible to color the vertices with k colors such that every edge is bichromatic (the endpoints have different colors).

3COL Problem

Input: A graph G.

Output: Yes/True if it is possible to color the vertices with 3 colors

- such that every edge is bichromatic (the endpoints have different colors).

3COL Problem

Input: A graph G.

Output: Yes/True if it is possible to color the vertices with 3 colors

- such that every edge is bichromatic (the endpoints have different colors).

3COL Problem

Input: A graph G.

Output: Yes/True if it is possible to color the vertices with 3 colors

- such that every edge is bichromatic (the endpoints have different colors).
 - Not 3-colorable

 $2COL \leq_m^P 3COL$ is true, false or open? $3COL \leq_m^P 2COL$ is true, false or open?

3SAT reduces to CLIQUE

Definition of 3SAT

Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

To satisfy a formula: Satisfy every single clause.

To satisfy a clause: Satisfy at least one literal in the clause.

<u>Output</u>: Yes iff the formula is satisfiable.

$$\wedge (x_2 \vee \neg x_5 \vee x_6)$$

3SAT ≤ CLIQUE: High level steps

We need to:

- 1. **Define**: $f: \Sigma^* \to \Sigma^*$.
- 2. Show: $w \in 3SAT \iff f(w) \in CLIQUE$.
- 3. **Show**: *f* is computable in poly-time.

Strategy:

 \mapsto ${\mathcal W}$ ∈ 3SAT proof \leftrightarrow (solution)

f(w)∈ CLIQUE

proof (solution)

3SAT: What is a "good" proof?

 $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg x_5 \lor x_6)$

can pick one literal from each clause and set them to True

the sequence of literals picked does not contain both a variable and its negation.

What is a "good" proof that $\langle \varphi \rangle \in 3SAT$?

- a truth assignment to the variables that satisfies the formula.

- a sequence of literals, one from each clause, not containing both a variable and its negation.

$3SAT \leq CLIQUE$: Defining the map

 \mapsto

 \leftrightarrow

 \leftrightarrow

1. **Define**: $f: \Sigma^* \to \Sigma^*$.

 $\langle \phi \rangle$ *m* clauses

proof

sequence of *m* literals, one from each clause, not containing a variable and its negation.

$\langle G_{\varphi}, m \rangle$

proof

clique of size *m*.

C_3 \wedge

The construction:

- A vertex for each literal in each clause.
- No edges between
 - two literals in same clause.
- No edges between
 - x_i and $\neg x_i$ for any *i*.
- All other possible edges present.
- Set k to be # clauses in φ .

$3SAT \leq CLIQUE$: Why it works

2. Show: $w \in 3SAT \iff f(w) \in CLIQUE$.

$$w = \langle \varphi \rangle \qquad \mapsto \qquad f(w) = m \text{ clauses}$$

 φ satisfiable $\iff G_{\varphi}$ contains an *m*-clique

This is true because by construction: proof \leftrightarrow proof

 $= \langle G_{\varphi}, m \rangle$

$3SAT \leq CLIQUE$: Why it works

 φ satisfiable $\iff G_{\varphi}$ contains an *m*-clique 2. **Show**:

 φ is satisfiable

can pick *m* literals, one from each clause, such that we don't pick a variable and its negation.

can pick *m* vertices in G_{φ} which are all connected (by an edge).

 G_{ω} contains an *m*-clique.

3SAT ≤ CLIQUE: Poly-time reduction

3. Show: f is computable in poly-time.

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most $O(m^2)$ possible edges.
- determining if an edge should be present is polynomial time.

Cook-Levin Theorem

2 potentially surprising things about Cook-Levin

- 1. There exists an NP-complete language.
- 2. SAT is one of them.

TM-SAT is NP-hard

A TM V is satisfiable if $\exists u \in \Sigma^*$ such that V(u) accepts.

Theorem: TM-SAT = { $\langle V \rangle$: V is a satisfiable TM} is NP-hard.

<u>Want to show</u>: for an arbitrary L in N

P,
$$L \leq_m^P \text{TM-SAT.}$$

 $\langle V_{w} \rangle$

(V is the verifier for L)

Definition: A language A is in NP if - there is a polynomial-time TM V, - a constant k, such that: $x \in L \implies \exists u \text{ with } |u| \leq |x|^k \text{ s.t. } V(x, u) \text{ accepts,}$ $x \notin L \implies \forall u, V(x, u)$ rejects.

 $x \in L \iff V(x, \cdot)$ is "satisfiable" (with a short string/proof) $V_{x}(\cdot)$ is "satisfiable"

TM-SAT is NP-hard

A TM V is satisfiable if $\exists u \in \Sigma^*$ such that V(u) accepts.

Theorem: TM-SAT = { $\langle V \rangle$: V is a satisfiable TM} is NP-hard.

<u>**Want to show</u></u>: For an arbitrary L in NP, L \leq_m^P TM-SAT.</u>**

 $\langle V_{\mu} \rangle$

(V is the verifier for L)

SAT is NP-hard

<u>**Want to show</u></u>: For an arbitrary L in NP, L \leq_m^P SAT.</u>**

- $\langle \varphi_{w} \rangle$ \mapsto ${\mathcal W}$
- $w \in L \quad \Leftrightarrow \quad \varphi_w$ is satisfiable
- <u>We have</u>: $w \in L$ \Leftrightarrow V_w is satisfiable

Main technical work: From V_w construct φ_w such that

 V_w is satisfiable \Leftrightarrow φ_w is satisfiable

