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Quick review



GOAL:  Understand the divide between 

               efficiently computable and not efficiently computable.

poly-time solvable exp-time solvable

matrix 

multiplication

MST

max matching

shortest path

testing primality

…

scheduling

TSP

Hamiltonian cycle

Pokémon

subset-sum

…

best we can say:



A reality we have to deal with:

We suck at proving lower bounds...



C

A
P

≤P  is C-hardA

C

A

P

A.
≤P  is C-completeA

P  C = PA ∈ ⟺

If  is C-hard for a big class C,

that's good evidence that P.

A
A ∉N



? But what is a good choice for C?



Which languages  are in NP?L

• Every input  induces (at most) exponentially large "possible solutions space".x
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• Easy (poly-time) to verify whether 

    a possible solution is a solution.

• If , there exists a solution   (certifying ).x ∈ L u x ∈ L

• If , there is no solution.x ∉ L



Does  certify/prove
u
x ∈ L?

True

or


False

x
u(proof/solution)

(input)

Efficient Verifier for L  NPL ∈

x ∈ L?
True


or

False

x(input)

Efficient Decider for L  PL ∈



Definition:  A language  is in NP ifL
- there is a polynomial-time TM ,V
- a constant ,k
such that:

 with  s.t.  accepts,x ∈ L ⟹ ∃u |u | ≤ |x |k V(x, u)
,  rejects.x ∉ L ⟹ ∀u V(x, u)

Does  certify/prove
u
x ∈ L?

True

or


False

x
u(proof/solution)

(input)

Efficient Verifier for L  NPL ∈



Cook-Levin Theorem:

NP
SAT≤P

P

SAT.

NP-hardness,     NP-completeness



Every L in NP
Cook-Levin Theorem
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A note about reductions



Cook reductions:  Poly-time Turing reductions

Solve  in poly-time using a blackbox that solves .A B

x
Yes


or

No

y

MA

MB
Yes

or


No

Can call     times.MB poly( |x | )

A ≤P B

 poly-time decidable     poly-time decidableB ⟹ A



Karp reductions:  Poly-time mapping reductions

Make one call to .  Directly use its answer as output.MB

A ≤P
m B

We must have:    x ∈ A ⟺ f(x) ∈ B

MA

MB
input

or
Yes
Notransform

f
x f(x)



Karp reductions:  Poly-time mapping reductions

⌃⇤ ⌃⇤

A B(poly-time computable)

f

We must have:    x ∈ A ⟺ f(x) ∈ B



Karp reductions:  Poly-time mapping reductions

1.  Define:   .f : Σ* → Σ*

2.  Show:         .x ∈ A ⟺ f(x) ∈ B

3.  Show:      is computable in poly-time.f

To show  :A ≤P
m B

MA

MB
input

or
Yes
Notransform

f
x f(x)



These lead to different notions of NP-hardness.

Can define NP-hardness with respect to   .≤P
m

(what experts use)

Can define NP-hardness with respect to  .≤P

(what some courses use for simplicity)

In CS251, we'll use Karp reductions   .≤P
m!

Cook  vs  Karp
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CLIQUE reduces to IND-SET



Karp reduction example:  CLIQUE ≤ IND-SET

Input:  where  is a graph and  is a positive int.⟨G, k⟩ G k

Output:  True iff  contains a clique of size .G k

CLIQUE



Karp reduction example:  CLIQUE ≤ IND-SET

Input:  where  is a graph and  is a positive int.⟨G, k⟩ G k

Output:  True iff  contains an independent set of size .G k

IND-SET



Karp reduction example:  CLIQUE ≤ IND-SET

Fact:  CLIQUE    IND-SET.≤P
m



Karp reduction example:  CLIQUE ≤ IND-SET

We need to:

1.  Define:   .f : Σ* → Σ*

2.  Show:    CLIQUE    IND-SET.w ∈ ⟺ f(w) ∈

3.  Show:     is computable in poly-time.f

 has a clique of size   iff   has an ind. set of size G k G′￼ k′￼

hG, ki 7! hG0, k0i
f



Karp reduction example:  CLIQUE ≤ IND-SET

G

 has a clique of size   iff   has an ind. set of size G k G′￼ k′￼

G0

This is called the 

complement of .G

hG, ki 7! hG0, k0i
f



Karp reduction example:  CLIQUE ≤ IND-SET

def  f(⟨G = (V, E), k⟩) :

1.  Define:   .f : Σ* → Σ*

- Return  .  ⟨G′￼ = (V, E′￼), k⟩

- Let  E′￼ = {{u, v} : u, v ∈ V, {u, v} ∉ E} .

⟨G, k⟩ ↦ ⟨G′￼, k⟩

Implicit type-checker:

not valid encoding    a string not in IND-SET  ( e.g.  )↦ ϵ



Karp reduction example:  CLIQUE ≤ IND-SET
2.  Show:    CLIQUE    IND-SET.w ∈ ⟺ f(w) ∈

CLIQUEw ∈

 and  has a clique  of size .w = ⟨G = (V, E), k⟩ G S ⊆ V k

⟺

In ,   is an ind. set of size .G′￼ = (V, E′￼) S ⊆ V k

⟺

IND-SET.f(w) = ⟨G′￼ = (V, E′￼), k⟩ ∈

⟺



Karp reduction example:  CLIQUE ≤ IND-SET

Creating , and therefore , can be done in poly-time.E′￼ G′￼

3.  Show:      is computable in poly-time.f



Poll Question



kCOL Problem
Input: A graph .G
Output: Yes/True if it is possible to color the vertices with  colorsk

such that every edge is bichromatic (the endpoints have different colors).



3COL Problem
Input: A graph .G
Output: Yes/True if it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have different colors).



3COL Problem
Input: A graph .G
Output: Yes/True if it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have different colors).

B

G B B B B B

R G

G R R R R R

B

R



3COL Problem
Input: A graph .G
Output: Yes/True if it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have different colors).

Not 3-colorable



Poll

3COL  2COL  is true, false or open?≤P
m

2COL  3COL  is true, false or open?≤P
m
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3SAT reduces to CLIQUE



Definition of 3SAT
Input:  A Boolean formula in "conjunctive normal form" in 
which every clause has exactly 3 literals.

Output:  Yes iff the formula is satisfiable.

a clause
(an OR of literals)

conjunctive normal form: AND of clauses.

To satisfy a formula:  Satisfy every single clause.

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)

literal: a variable or its negation

To satisfy a clause:  Satisfy at least one literal in the clause.



3SAT ≤ CLIQUE:  High level steps
We need to:

1.  Define:   .f : Σ* → Σ*

2.  Show:    3SAT    CLIQUE.w ∈ ⟺ f(w) ∈

3.  Show:     is computable in poly-time.f

Strategy:
w ↦ f(w)

 3SAT∈  CLIQUE∈

proof
(solution)

↔ proof
(solution)



3SAT:  What is a "good" proof?

What is a "good" proof that  3SAT ? ⟨φ⟩ ∈
- a truth assignment to the variables that satisfies the formula.

- a sequence of literals, one from each clause, 

  not containing both a variable and its negation. 

 satisfiableφ

()
can pick one literal from each clause and set them to True

()
the sequence of literals picked does not contain 

both a variable and its negation.

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ x5) ∧ (x2 ∨ ¬x5 ∨ x6)



3SAT ≤ CLIQUE:  Defining the map
1.  Define:   .f : Σ* → Σ*

⟨φ⟩ ↦ ⟨Gφ, m⟩
 clausesm

proof proof↔
sequence of  literals,

one from each clause,


not containing a variable

and its negation.

m
clique of size .m↔



3SAT ≤ CLIQUE:  Defining the map

' = (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x1 _ ¬x1)

- No edges between

  two literals in same clause.

- No edges between

     and    for any .xi ¬xi i
- All other possible edges 

  present.

k = 3 - Set k to be # clauses in     . '

The construction:

x1

¬x2

x3

C1

x1 x1 ¬x1C3

¬x1

x2

x3

C2

C1 C2 C3^ ^

G'

- A vertex for each literal

  in each clause.



3SAT ≤ CLIQUE:  Why it works
2.  Show:   3SAT    CLIQUE.w ∈ ⟺ f(w) ∈

      satisfiable             contains an -cliqueφ ⟺ Gφ m

w = ⟨φ⟩ ↦ f(w) = ⟨Gφ, m⟩
 clausesm

sequence of  literals,


proof proof↔

This is true because by construction:



3SAT ≤ CLIQUE:  Why it works
2.  Show:       satisfiable        contains an -cliqueφ ⟺ Gφ m

 is satisfiableφ

can pick  literals, one from each clause,

such that we don't pick a variable and its negation.

m
⟺

can pick  vertices in  which are all connected 

(by an edge).

m Gφ

⟺

 contains an -clique.Gφ m
⟺



3SAT ≤ CLIQUE:  Poly-time reduction

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most  possible edges.O(m2)
- determining if an edge should be present 

  is polynomial time.

3.  Show:      is computable in poly-time.f



Every L in NP
Cook-Levin Theorem

SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IND-SET



Cook-Levin Theorem



2 potentially surprising things about Cook-Levin

1. There exists an NP-complete language.

Theorem (Cook 1971, Levin 1973): 

 is NP-complete.𝖲𝖠𝖳

NP

SAT≤P
m

P

SAT.

2. SAT is one of them.



TM-SAT is NP-hard
A TM  is satisfiable if  such that  accepts.V ∃u ∈ Σ* V(u)

Theorem: TM-SAT  is NP-hard.= {⟨V⟩ : V is a satisfiable TM}

Want to show:  for an arbitrary  in NP,     TM-SAT.L L ≤P
m

w ↦ ⟨Vw⟩

  w ∈ L   TM-SAT⟨Vw⟩ ∈  ⇔

(  is the verifier for )V L



Definition:  A language  is in NP ifA
- there is a polynomial-time TM ,V
- a constant ,k
such that:

 with  s.t.  accepts,x ∈ L ⟹ ∃u |u | ≤ |x |k V(x, u)
,  rejects.x ∉ L ⟹ ∀u V(x, u)

  is "satisfiable"  x ∈ L ⟺ V(x, ⋅ )
 is "satisfiable"Vx( ⋅ )

(with a short string/proof)



TM-SAT is NP-hard
A TM  is satisfiable if  such that  accepts.V ∃u ∈ Σ* V(u)

Theorem: TM-SAT  is NP-hard.= {⟨V⟩ : V is a satisfiable TM}

Want to show:  For an arbitrary  in NP,     TM-SAT.L L ≤P
m

w ↦ ⟨Vw⟩

  w ∈ L  is satisfiableVw  ⇔

(  is the verifier for )V L

Theorem: BOUNDED-TM-SAT is NP-complete.



SAT is NP-hard
Want to show:  For an arbitrary  in NP,     SAT.L L ≤P

m

w ↦ ⟨φw⟩

  w ∈ L  is satisfiableφw  ⇔

 is satisfiableφw  ⇔ is satisfiableVw

From  construct  such thatVw φw

  w ∈ L  is satisfiableVw  ⇔We have:

Main technical work:



Is NP-completeness a death sentence?

Should we just give up??


