
CS251

Computer Science
Theoretical

Great Ideas
in

P vs NP, Round 2

Quick review

GOAL: Understand the divide between

 efficiently computable and not efficiently computable.

poly-time solvable exp-time solvable

matrix

multiplication

MST

max matching

shortest path

testing primality

…

scheduling

TSP

Hamiltonian cycle

Pokémon

subset-sum

…

best we can say:

A reality we have to deal with:

We suck at proving lower bounds...

C

A
P

≤P is C-hardA

C

A

P

A.
≤P is C-completeA

P C = PA ∈ ⟺

If is C-hard for a big class C,

that's good evidence that P.

A
A ∉N

? But what is a good choice for C?

Which languages are in NP?L

• Every input induces (at most) exponentially large "possible solutions space".x

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

..
.
.

.

.

.

.
.

u

• Easy (poly-time) to verify whether

 a possible solution is a solution.

• If , there exists a solution (certifying).x ∈ L u x ∈ L

• If , there is no solution.x ∉ L

Does certify/prove
u
x ∈ L?

True

or

False

x
u(proof/solution)

(input)

Efficient Verifier for L NPL ∈

x ∈ L?
True

or

False

x(input)

Efficient Decider for L PL ∈

Definition: A language is in NP ifL
- there is a polynomial-time TM ,V
- a constant ,k
such that:

 with s.t. accepts,x ∈ L ⟹ ∃u |u | ≤ |x |k V(x, u)
, rejects.x ∉ L ⟹ ∀u V(x, u)

Does certify/prove
u
x ∈ L?

True

or

False

x
u(proof/solution)

(input)

Efficient Verifier for L NPL ∈

Cook-Levin Theorem:

NP
SAT≤P

P

SAT.

NP-hardness, NP-completeness

Every L in NP
Cook-Levin Theorem

SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IND-SET

Every L in NP
Cook-Levin Theorem

SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IND-SET

A note about reductions

Cook reductions: Poly-time Turing reductions

Solve in poly-time using a blackbox that solves .A B

x
Yes

or

No

y

MA

MB
Yes

or

No

Can call times.MB poly(|x |)

A ≤P B

 poly-time decidable poly-time decidableB ⟹ A

Karp reductions: Poly-time mapping reductions

Make one call to . Directly use its answer as output.MB

A ≤P
m B

We must have: x ∈ A ⟺ f(x) ∈ B

MA

MB
input

or
Yes
Notransform

f
x f(x)

Karp reductions: Poly-time mapping reductions

⌃⇤ ⌃⇤

A B(poly-time computable)

f

We must have: x ∈ A ⟺ f(x) ∈ B

Karp reductions: Poly-time mapping reductions

1. Define: .f : Σ* → Σ*

2. Show: .x ∈ A ⟺ f(x) ∈ B

3. Show: is computable in poly-time.f

To show :A ≤P
m B

MA

MB
input

or
Yes
Notransform

f
x f(x)

These lead to different notions of NP-hardness.

Can define NP-hardness with respect to .≤P
m

(what experts use)

Can define NP-hardness with respect to .≤P

(what some courses use for simplicity)

In CS251, we'll use Karp reductions .≤P
m!

Cook vs Karp

Every L in NP
Cook-Levin Theorem

SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IND-SET

CLIQUE reduces to IND-SET

Karp reduction example: CLIQUE ≤ IND-SET

Input: where is a graph and is a positive int.⟨G, k⟩ G k

Output: True iff contains a clique of size .G k

CLIQUE

Karp reduction example: CLIQUE ≤ IND-SET

Input: where is a graph and is a positive int.⟨G, k⟩ G k

Output: True iff contains an independent set of size .G k

IND-SET

Karp reduction example: CLIQUE ≤ IND-SET

Fact: CLIQUE IND-SET.≤P
m

Karp reduction example: CLIQUE ≤ IND-SET

We need to:

1. Define: .f : Σ* → Σ*

2. Show: CLIQUE IND-SET.w ∈ ⟺ f(w) ∈

3. Show: is computable in poly-time.f

 has a clique of size iff has an ind. set of size G k G′￼ k′￼

hG, ki 7! hG0, k0i
f

Karp reduction example: CLIQUE ≤ IND-SET

G

 has a clique of size iff has an ind. set of size G k G′￼ k′￼

G0

This is called the

complement of .G

hG, ki 7! hG0, k0i
f

Karp reduction example: CLIQUE ≤ IND-SET

def f(⟨G = (V, E), k⟩) :

1. Define: .f : Σ* → Σ*

- Return . ⟨G′￼ = (V, E′￼), k⟩

- Let E′￼ = {{u, v} : u, v ∈ V, {u, v} ∉ E} .

⟨G, k⟩ ↦ ⟨G′￼, k⟩

Implicit type-checker:

not valid encoding a string not in IND-SET (e.g.)↦ ϵ

Karp reduction example: CLIQUE ≤ IND-SET
2. Show: CLIQUE IND-SET.w ∈ ⟺ f(w) ∈

CLIQUEw ∈

 and has a clique of size .w = ⟨G = (V, E), k⟩ G S ⊆ V k

⟺

In , is an ind. set of size .G′￼ = (V, E′￼) S ⊆ V k

⟺

IND-SET.f(w) = ⟨G′￼ = (V, E′￼), k⟩ ∈

⟺

Karp reduction example: CLIQUE ≤ IND-SET

Creating , and therefore , can be done in poly-time.E′￼ G′￼

3. Show: is computable in poly-time.f

Poll Question

kCOL Problem
Input: A graph .G
Output: Yes/True if it is possible to color the vertices with colorsk

such that every edge is bichromatic (the endpoints have different colors).

3COL Problem
Input: A graph .G
Output: Yes/True if it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have different colors).

3COL Problem
Input: A graph .G
Output: Yes/True if it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have different colors).

B

G B B B B B

R G

G R R R R R

B

R

3COL Problem
Input: A graph .G
Output: Yes/True if it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have different colors).

Not 3-colorable

Poll

3COL 2COL is true, false or open?≤P
m

2COL 3COL is true, false or open?≤P
m

Every L in NP
Cook-Levin Theorem

SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IND-SET

3SAT reduces to CLIQUE

Definition of 3SAT
Input: A Boolean formula in "conjunctive normal form" in
which every clause has exactly 3 literals.

Output: Yes iff the formula is satisfiable.

a clause
(an OR of literals)

conjunctive normal form: AND of clauses.

To satisfy a formula: Satisfy every single clause.

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)

literal: a variable or its negation

To satisfy a clause: Satisfy at least one literal in the clause.

3SAT ≤ CLIQUE: High level steps
We need to:

1. Define: .f : Σ* → Σ*

2. Show: 3SAT CLIQUE.w ∈ ⟺ f(w) ∈

3. Show: is computable in poly-time.f

Strategy:
w ↦ f(w)

 3SAT∈ CLIQUE∈

proof
(solution)

↔ proof
(solution)

3SAT: What is a "good" proof?

What is a "good" proof that 3SAT ? ⟨φ⟩ ∈
- a truth assignment to the variables that satisfies the formula.

- a sequence of literals, one from each clause,

 not containing both a variable and its negation.

 satisfiableφ

()
can pick one literal from each clause and set them to True

()
the sequence of literals picked does not contain

both a variable and its negation.

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ x5) ∧ (x2 ∨ ¬x5 ∨ x6)

3SAT ≤ CLIQUE: Defining the map
1. Define: .f : Σ* → Σ*

⟨φ⟩ ↦ ⟨Gφ, m⟩
 clausesm

proof proof↔
sequence of literals,

one from each clause,

not containing a variable

and its negation.

m
clique of size .m↔

3SAT ≤ CLIQUE: Defining the map

' = (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x1 _ ¬x1)

- No edges between

 two literals in same clause.

- No edges between

 and for any .xi ¬xi i
- All other possible edges

 present.

k = 3 - Set k to be # clauses in . '

The construction:

x1

¬x2

x3

C1

x1 x1 ¬x1C3

¬x1

x2

x3

C2

C1 C2 C3^ ^

G'

- A vertex for each literal

 in each clause.

3SAT ≤ CLIQUE: Why it works
2. Show: 3SAT CLIQUE.w ∈ ⟺ f(w) ∈

 satisfiable contains an -cliqueφ ⟺ Gφ m

w = ⟨φ⟩ ↦ f(w) = ⟨Gφ, m⟩
 clausesm

sequence of literals,

proof proof↔

This is true because by construction:

3SAT ≤ CLIQUE: Why it works
2. Show: satisfiable contains an -cliqueφ ⟺ Gφ m

 is satisfiableφ

can pick literals, one from each clause,

such that we don't pick a variable and its negation.

m
⟺

can pick vertices in which are all connected

(by an edge).

m Gφ

⟺

 contains an -clique.Gφ m
⟺

3SAT ≤ CLIQUE: Poly-time reduction

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most possible edges.O(m2)
- determining if an edge should be present

 is polynomial time.

3. Show: is computable in poly-time.f

Every L in NP
Cook-Levin Theorem

SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IND-SET

Cook-Levin Theorem

2 potentially surprising things about Cook-Levin

1. There exists an NP-complete language.

Theorem (Cook 1971, Levin 1973):

 is NP-complete.𝖲𝖠𝖳

NP

SAT≤P
m

P

SAT.

2. SAT is one of them.

TM-SAT is NP-hard
A TM is satisfiable if such that accepts.V ∃u ∈ Σ* V(u)

Theorem: TM-SAT is NP-hard.= {⟨V⟩ : V is a satisfiable TM}

Want to show: for an arbitrary in NP, TM-SAT.L L ≤P
m

w ↦ ⟨Vw⟩

 w ∈ L TM-SAT⟨Vw⟩ ∈ ⇔

(is the verifier for)V L

Definition: A language is in NP ifA
- there is a polynomial-time TM ,V
- a constant ,k
such that:

 with s.t. accepts,x ∈ L ⟹ ∃u |u | ≤ |x |k V(x, u)
, rejects.x ∉ L ⟹ ∀u V(x, u)

 is "satisfiable" x ∈ L ⟺ V(x, ⋅)
 is "satisfiable"Vx(⋅)

(with a short string/proof)

TM-SAT is NP-hard
A TM is satisfiable if such that accepts.V ∃u ∈ Σ* V(u)

Theorem: TM-SAT is NP-hard.= {⟨V⟩ : V is a satisfiable TM}

Want to show: For an arbitrary in NP, TM-SAT.L L ≤P
m

w ↦ ⟨Vw⟩

 w ∈ L is satisfiableVw ⇔

(is the verifier for)V L

Theorem: BOUNDED-TM-SAT is NP-complete.

SAT is NP-hard
Want to show: For an arbitrary in NP, SAT.L L ≤P

m

w ↦ ⟨φw⟩

 w ∈ L is satisfiableφw ⇔

 is satisfiableφw ⇔ is satisfiableVw

From construct such thatVw φw

 w ∈ L is satisfiableVw ⇔We have:

Main technical work:

Is NP-completeness a death sentence?

Should we just give up??

