CS5251

Great Ideas

in
Theoretical

Computer Science

P vs NP, Round 2

Quick review

GOAL: Understand the divide between

efficiently computable and not efficiently computable.

testing primality

Hamiltonian cycle

matrix hedul
multiplication g'ecying

MST TSP
subset-sum

max matching

shortest path Pokemon

| best we can say:
poly-time solvable exp-time solvable

A reality we have to deal with:

© 9

We suck at proving lower bounds... ¢

It A is C-hard for a big class C,
that's good evidence that A & P.

Cr)
S <" A A is C-hard
p
_ — /
C
4 A A
. < A A is C-complete
p

_ —) AeP—=C=P

o But what is a good choice tor C?

Which languages L are in NP?

* Every input x induces (at most) exponentially large "possible solutions space”.

e [t x € L, there exists a solution u (certitying x € L).
o [t x & L, there is no solution.

® Easy (poly-time) to verity whether
a possible solution is a solution.

Efficient Decider for L

LeP
r p
(input) X — x € L? —
N y
L € NP Efficient Verifier for L
r p
(input) X — Does u certify/prove N
(proot/solution) u — x € L?

True
or

False

True
or

False

L € NP

(input) X —

(proot/solution) u —

Efficient Verifier for L

(

Does u certity/prove
x€L?

\

—>

True
or

False

- a constant k,

such that:

x¢& L = Vu, V(x, u) rejects.

p
Definition: A language L is in NP if

- there is a polynomial-time TM V,

x€L = duwith |ul| < \x\k s.t. V(x, u) accepts,

NP-hardness, INP-completeness

Cook-Levin Theorem:

NP WSAT A
<" SAT

Every L In
l Cook-Levin Theorem

SAT

N

3SAT 3COL

7N\

SUBSET-SUM CLIQUE

I

VERTEX-COVER IND-SET

|

HAMILTONIAN-CYCLE

|

TSP

Every L in NP
i Cook-Levin Theorem

SAT

N

3SAT 3COL

"

SUBSET-SUM CLIQUE

| ™~

VERTEX-COVER IND-SET

|

HAMILTONIAN-CYCLE

|

TSP

A note about reductions

Cook reductions: Poly-time Turing reductions

A<'B

Solve A in poly-time using a blackbox that solves B.

Yes

or

No

Can call My poly(|x]|) times.

B poly-time decidable = A poly-time decidable

Karp reductions: Poly-time mapping reductions

Yes

transform No
INput

We must have: x€A < f(x) €B

Karp reductions: Poly-time mapping reductions

We must have: x€A < f(x) €B

f 4 R

(poly-time computable)

I
|l

Karp reductions: Poly-time mapping reductions

transform
Input No

To show A <’ B :
1. Define: f:X* — X%,
2. Show: xe€e A < f(x) €B.

3. Show: [is computable in poly-time.

Cook vs Karp

Can define NP-hardness with respect to <*.

(what some courses use for simplicity)

Can define NP-hardness with respect to <; .

(what experts use)

These lead to different notions of NP-hardness.

o In CS251, we'll use Karp reductions < .

Every L in NP
i Cook-Levin Theorem

SAT

N

3SAT 3COL

"

SUBSET-SUM CLIQUE

| ™~

VERTEX-COVER IND-SET

|

HAMILTONIAN-CYCLE

|

TSP

CLIQUE reduces to IND-SET

Karp reduction example: CLIQUE =< IND-SET

CLIQUE
Input: (G, k) where G is a graph and k is a positive int.

Output: True iff G contains a clique of size k.

) ‘
el b

RSN
S

Karp reduction example: CLIQUE =< IND-SET
IND-SET

Input: (G, k) where G is a graph and k is a positive int.

Output: True ift G contains an independent set of size k.

S
e

®
igd
\

Karp reduction example: CLIQUE =< IND-SET

Fact: CLIQUE <P IND-SET.

Karp reduction example: CLIQUE =< IND-SET

We need to:

1. Define: f:X* — X*.
2. Show: w e CLIQUE < f(w) € IND-SET.

3. Show: fis computable in poly-time.

(G, k) L (G', k")

G has a clique of size k iff G"has an ind. set of size k’

Karp reduction example: CLIQUE =< IND-SET

(G, k) L (G', k")

G has a clique of size k iff G'has an ind. set of size k'

G G

This is called the
complement ot G.

Karp reduction example: CLIQUE =< IND-SET

1. Define: f:X* — X*.

def f((G = (V,E), k)) :
-lLet E'={{u,v}:uveV {uvl&FE}.
- Return (G' = (V,E"), k).

(G, kY » (Gk)

Implicit type-checker:

not valid encoding +— a string not in IND-SET (e.qg. €)

Karp reduction example: CLIQUE =< IND-SET

2. Show: w e CLIQUE < f(w) € IND-SET.

w € CLIQUE

—

w= (G = (V,E), k) and G has a clique S C V of size k.
—

InG'=(V,E"), S C Visan ind. set of size k.

—

fw) = (G’ = (V,E'), k) € IND-SET.

Karp reduction example: CLIQUE =< IND-SET

3. Show: f is computable in poly-time.

Creating E’, and therefore G’, can be done in poly-time.

Poll Question

kCOL Problem

Input: A graph G.

Output: Yes/True if it is possible to color the vertices with k colors

such that every edge is bichromatic (the endpoints have ditterent colors).

3COL Problem

Input: A graph G.

Output: Yes/True it it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have ditterent colors).

3COL Problem

Input: A graph G.

Output: Yes/True it it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have ditterent colors).

B

3COL Problem

Input: A graph G.

Output: Yes/True it it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have ditterent colors).

Not 3-colorable

Poll

2COL <P 3COL is true, false or open?

3COL <" 2COL is true, false or open?

Every L in NP
i Cook-Levin Theorem

SAT

N

3SAT 3COL

"

SUBSET-SUM CLIQUE

| ™~

VERTEX-COVER IND-SET

|

HAMILTONIAN-CYCLE

|

TSP

3SAT reduces to CLIQUE

Definition of 3SAT

Input: A Boolean formula in "conjunctive normal form" in

which every clause has exactly 3 literals.

(x1V oz Vasz)A(-x1 VayVas) A(xe Vx5V xg)
N—

a clause literal: a variable or its negation
(an OR of literals)

conjunctive normal form: AND of clauses.

To satisfy a formula: Satisty every single clause.

To satisfy a clause: Satisty at least one literal in the clause.

Output: Yes iff the formula is satisfiable.

3SAT = CLIQUE: High level steps

We need to:

1. Define: f:X* — X*
2. Show: w e 3SAT < f(w) € CLIQUE.

3. Show: fis computable in poly-time.

Strategy:
W e fw)
€ 3SAT € CLIQUE
proof — proof

(solution) (solution)

3SAT: What is a "good" proof?

qﬂ — (.xl v_'.X2v.X3)/\(_'xl VX4VX5)/\(X2V—I)C5 Vx6)

@ satisfiable

<—

can pick one literal from each clause and set them to True

<—

the sequence of literals picked does not contain

both a variable and its negation.

What is a "good" proof that (@) € 3SAT ?

- a truth assignment to the variables that satisties the formula.

- a sequence of literals, one from each clause,
not containing both a variable and its negation.

3SAT =< CLIQUE: Detining the map

1. Define: f:X* — X*

(@) - (G, m)
m clauses
proof > proof

sequence of m literals,
one from each clause, PN clique of size m.
not containing a variable
and its negation.

3SAT =< CLIQUE: Detining the map

C /\ C' /\ Cs
L = (281 V X9 \/563) /\ (_wl V T9 \/512‘3) /\ (1171 V1V _lili‘l)
L]

The construction:

t

- A vertex for each literal

G, in each clause.
- No edges between
two literals in same clause.
_Ia’jz
- No edges between
L3

x; and —x; foranyi.

C1 - All other possible edges
present.

- Set k to be # clauses in ©.

3SAT < CLIQUE: Why it works

2. Show: w € 3SAT < f(w) € CLIQUE.

w = (@) — fw) =(G,, m)

m clauses

@ satistiable < G, contains an m-clique

This is true because by construction:

proof > proof

3SAT < CLIQUE: Why it works

2. Show: ¢ satistiable < G, contains an m-clique

@ is satisfiable
—

can pick m literals, one from each clause,
such that we don't pick a variable and its negation.

—

can pick m vertices in G, which are all connected
(loy an edge).
—

G, contains an m-clique.

3SAT =< CLIQUE: Poly-time reduction

3. Show: f is computable in poly-time.

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m?) possible edges.

- determining if an edge should be present
is polynomial time.

Every L in NP
i Cook-Levin Theorem

SAT

N

3SAT 3COL

"

SUBSET-SUM CLIQUE

| ™~

VERTEX-COVER IND-SET

|

HAMILTONIAN-CYCLE

|

TSP

Cook-Levin Theorem

2 potentially surprising things about Cook-Levin

p
Theorem (Cook 1971, Levin 1973):
SAT is NP-complete.

NP

_ — J

1. There exists an NP-complete language.

2. SAT is one of them.

TM-SAT is NP-hard
A TM V is satisfiable it Ju € 2* such that V(u) accepts.

p
Theorem: TM-SAT = {{(V) : Vs a satisfiable TM} is NP-hard.

Want to show: for an arbitrary Lin NP, L <!’ TM-SAT.

W — (Vi)
weL & (V) € TM-SAT
(V is the verifier for L)

p
Definition: A language A isin NP if

- there is a polynomial-time TM V,

- a constant k,

such that:
x€L — Juwith |ul| < \xlk s.t. V(x, u) accepts,

x¢& L = Vu, V(x,u) rejects.

x€L < V(x,-)is "satisfiable" (with a short string/proof)
V.(-)is "satisfiable"

TM-SAT is NP-hard
A TM V is satisfiable it Ju € 2* such that V(u) accepts.

p
Theorem: TM-SAT = {{(V) : Vs a satisfiable TM} is NP-hard.

Want to show: For an arbitrary Lin NP, L <7 TM-SAT.

w - V)
weE L = V., is satisfiable

(Vis the verifier for L)

p
Theorem: BOUNDED-TM-SAT is NP-complete. '

SAT is NP-hard

Want to show: For an arbitrary Lin NP, L </ SAT.

w - (@)
weE L = @,, is satisfiable
We have: weE L & V. is satisfiable

Main technical work: From V, construct ¢,, such that

V., is satistiable = @,, is satistiable

0 s NP-completeness a death sentence?
Should we just give up?

