CS251 Computer Science *Theoretical* **Great Ideas in**

P vs NP, Round 2

Quick review

GOAL: Understand the divide between efficiently computable and **not** efficiently computable.

best we can say:

A reality we have to deal with: We suck at proving lower bounds...

≤*^P A* is C-complete

$A \in P \Longleftrightarrow C = P$

Which languages *L* are in NP?

• Every input *x* induces (at most) exponentially large "*possible solutions space*".

- If $x \in L$, there exists a solution u (certifying $x \in L$).
- If $x \notin L$, there is no solution.
- Easy (poly-time) to verify whether a possible solution is a solution.

Definition: A language *L* is in NP if - there is a polynomial-time TM *V*, - a constant *k*, such that: $x \in L \longrightarrow \exists u$ with $|u| \leq |x|^k$ s.t. $V(x, u)$ accepts, $x \notin L \implies \forall u, V(x, u)$ rejects.

Cook-Levin Theorem:

NP-hardness, NP-completeness

A note about reductions

Cook reductions: Poly-time Turing reductions

 $A \leq^P B$

Solve *A* in poly-time using a blackbox that solves *B.*

Can call M_B poly($|x|$) times.

B poly-time decidable \implies *A* poly-time decidable

-
-

Karp reductions: Poly-time mapping reductions

 $A \leq_m^P$ *^m B*

Make one call to M_R . Directly use its answer as output.

We must have: $x \in A \iff f(x) \in B$

Karp reductions: Poly-time mapping reductions

We must have: $x \in A \iff f(x) \in B$

Karp reductions: Poly-time mapping reductions

To show $A \leq_m^P B$: *^m B*

- 1. Define: $f: \Sigma^* \to \Sigma^*$.
- 2. Show: $x \in A \iff f(x) \in B$.

3. Show: *f* is computable in poly-time.

These lead to different notions of NP-hardness.

Can define NP-hardness with respect to \leq^P_m . (what experts use)

P m

Can define NP-hardness with respect to \leq^P . (what some courses use for simplicity)

P

Cook vs Karp

CLIQUE reduces to IND-SET

Input: ⟨*G*, *k*⟩ where *G* is a graph and *k* is a positive int. Output: True iff *G* contains a clique of size *k*.

-
-

Input: ⟨*G*, *k*⟩ where *G* is a graph and *k* is a positive int. Output: True iff *G* contains an independent set of size *k*.

Fact: CLIQUE \leq^P_m IND-SET. *m*

-
- -
-
-
- - -

We need to:

- 1. Define: $f: \Sigma^* \to \Sigma^*$.
- 2. Show: $w \in \text{CLIQUE} \iff f(w) \in \text{IND-SET}.$
- 3. Show: *f* is computable in poly-time.

G has a clique of size *k* iff *G*′ has an ind. set of size *k*′

$$
\langle G, k \rangle \overset{f}{\mapsto} \langle G', k' \rangle
$$

 $\langle G, k \rangle \mapsto \langle G', k' \rangle$ $\int \rightarrow \langle G', k' \rangle$

 G'

G has a clique of size *k* iff *G*′ has an ind. set of size *k*′

This is called the complement of *G*.

1. Define: $f: \Sigma^* \to \Sigma^*$.

$$
\begin{aligned} \text{def } f(\langle G = (V, E), k \rangle) : \\ \text{- Let } E' = \{ \{u, v\} : u, v \in V, \{u\} \\ \text{- Return } \langle G' = (V, E'), k \rangle. \end{aligned}
$$

Implicit type-checker: not valid encoding \mapsto a string not in IND-SET (e.g. ϵ)

${u, v} \notin E$.

$$
\langle G, k \rangle \mapsto \langle G', k \rangle
$$

2. Show: $w \in \text{CLIQUE} \iff f(w) \in \text{IND-SET}.$

$w \in \mathsf{CLIOUE}$

 $w = \langle G = (V, E), k \rangle$ and *G* has a clique $S \subseteq V$ of size *k*.

In $G' = (V, E')$, $S \subseteq V$ is an ind. set of size k .

 \Longleftrightarrow

 \Longleftrightarrow

 $f(w) = \langle G' = (V, E'), k \rangle \in IND\text{-SET}.$

Creating *E*′, and therefore *G*′, can be done in poly-time.

Karp reduction example: CLIQUE ≤ IND-SET

3. Show: *f* is computable in poly-time.

Poll Question

kCOL Problem

Input: A graph *G*.

Output: Yes/True if it is possible to color the vertices with *k* colors such that every edge is bichromatic (the endpoints have different colors).

3COL Problem

Input: A graph *G*.

Output: Yes/True if it is possible to color the vertices with 3 colors

-
- such that every edge is bichromatic (the endpoints have different colors).

3COL Problem

Input: A graph *G*.

<u>Output:</u> Yes/True if it is possible to color the vertices with 3 colors

such that every edge is bichromatic (the endpoints have different colors).

3COL Problem

Input: A graph *G*.

<u>Output:</u> Yes/True if it is possible to color the vertices with 3 colors

-
- such that every edge is bichromatic (the endpoints have different colors).
	- Not 3-colorable

m

 3 COL $\leq^P_m 2$ COL is true, false or open? *m* $2COL \leq_m^P 3COL$ is true, false or open?

3SAT reduces to CLIQUE

Definition of 3SAT

Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

To satisfy a formula: Satisfy every single clause.

To satisfy a clause: Satisfy at least one literal in the clause.

Output: Yes iff the formula is satisfiable.

$$
) \wedge (x_2 \vee \neg x_5 \vee x_6)
$$

-
-
-
-

3SAT ≤ CLIQUE: High level steps

We need to:

- 1. Define: $f: \Sigma^* \to \Sigma^*$.
- 2. Show: $w \in 3SAT \iff f(w) \in CLIQUE$.
- 3. Show: *f* is computable in poly-time.

Strategy:

 $w \mapsto f(w)$ ∈ 3SAT ∈ CLIQUE proof (solution) ↔ proof

(solution)

3SAT: What is a "good" proof?

 $\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_4 \vee x_5) \wedge (x_2 \vee \neg x_5 \vee x_6)$

- a truth assignment to the variables that satisfies the formula.

- a sequence of literals, one from each clause, not containing both a variable and its negation.

can pick one literal from each clause and set them to True

the sequence of literals picked does not contain both a variable and its negation.

What is a "good" proof that $\langle \varphi \rangle \in$ 3SAT ?

3SAT ≤ CLIQUE: Defining the map

1. Define: $f: \Sigma^* \to \Sigma^*$.

m clauses

sequence of m literals, one from each clause, not containing a variable and its negation.

$\langle \varphi \rangle \longrightarrow \langle G_{\varphi}, m \rangle$

$\mathsf{proof} \leftrightarrow \mathsf{proof}$

↔ clique of size *m*.

- A vertex for each literal in each clause.
- No edges between
	- two literals in same clause.
- No edges between
	- x_i and $\neg x_i$ for any *i*.
- All other possible edges present.
- $k=3$ Set *k* to be # clauses in φ .

The construction:

3SAT ≤ CLIQUE: Why it works

2. Show: $w \in 3SAT \iff f(w) \in CLIOUE$.

$$
w = \langle \varphi \rangle \qquad \mapsto \qquad f(w) =
$$

m clauses

 φ satisfiable \iff G_{φ} contains an *m*-clique

proof ↔ proof This is true because by construction:

 $= \langle G_{\varphi}, m \rangle$

-
-

3SAT ≤ CLIQUE: Why it works

2. **Show**: φ satisfiable \iff G_{φ} contains an *m*-clique

φ is satisfiable

 \Longleftrightarrow

can pick m literals, one from each clause, such that we don't pick a variable and its negation.

 \Longleftrightarrow

can pick m vertices in G_φ which are all connected (by an edge).

 G_{ω} contains an *m*-clique.

3SAT ≤ CLIQUE: Poly-time reduction

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

- there are at most $O(m^2)$ possible edges.
- determining if an edge should be present is polynomial time.

Creating the edge set:

3. Show: *f* is computable in poly-time.

Cook-Levin Theorem

2 potentially surprising things about Cook-Levin

- 1. There exists an NP-complete language.
- 2. SAT is one of them.

TM-SAT is NP-hard

A TM *V* is **satisfiable** if $\exists u \in \Sigma^*$ such that $V(u)$ accepts.

Theorem: TM-SAT = $\{ \langle V \rangle : V$ is a satisfiable TM} is NP-hard.

Want to show: for an arbitrary L in NP, $L \leq^P_m\textsf{TM-SAT}.$

- *m*
-
-
- (*V* is the verifier for *L*)

Definition: A language *A* is in NP if - there is a polynomial-time TM *V*, - a constant *k*, such that: $x \in L \longrightarrow \exists u$ with $|u| \leq |x|^k$ s.t. $V(x, u)$ accepts, $x \notin L \longrightarrow \forall u, V(x, u)$ rejects.

 $x \in L \iff V(x, \cdot)$ is "**satisfiable**" (with a short string/proof) $V_x(\cdot)$ is "satisfiable"

TM-SAT is NP-hard

A TM *V* is **satisfiable** if $\exists u \in \Sigma^*$ such that $V(u)$ accepts.

Theorem: TM-SAT = $\{ \langle V \rangle : V$ is a satisfiable TM is NP-hard.

Want to show: For an arbitrary L in N

$$
IP, \quad L \leq_m^P TM-SAT.
$$

-
- (*V* is the verifier for *L*)

SAT is NP-hard

Want to show: For an arbitrary L in NP, $L \leq^P_m {\text{SAT}}$.

- $w \mapsto \langle \varphi_w \rangle$
- $w \in L$ \Leftrightarrow φ_w is satisfiable
- **We have:** $w ∈ L$ \Leftrightarrow V_w is satisfiable

 M ain technical work: From V_w construct φ_w such that

V^w is satisfiable \Leftrightarrow φ_w is satisfiable

m

