

Cook vs Karp Reductions Cook Reduction:

Karp Reduction:

CLIQUE reduces to IND-SET

Clique: A set S of vertices in a graph G = (V, E) such that for all $u, v \in S$, $\{u, v\} \in E$.

Independent set: A set S of vertices in a graph G = (V, E) such that for all $u, v \in S$, $\{u, v\} \notin E$.

CLIQUE

Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. Output: Yes iff G contains a clique of size k.

IND-SET

Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. Output: Yes iff G contains an independent set of size k.

Theorem: CLIQUE Karp reduces to IND-SET

Intuition:

Steps needed to establish a Karp reduction:

1.

2.

3.

Test Your Intuition

kCOL

Input: $\langle G \rangle$ where G is a graph. Output: Yes iff G is k-colorable.

Which of the following are true?

- $3\text{COL} \leq_m^P 2\text{COL}$ is known to be true.
- 3COL \leq_m^P 2COL is known to be false.
- $3\text{COL} \leq_m^P 2\text{COL}$ is open.
- 2COL \leq_m^P 3COL is known to be true.
- 2COL \leq_m^P 3COL is known to be false.
- 2COL \leq_m^P 3COL is open.

3SAT reduces to CLIQUE

3SAT

Input: $\langle \varphi \rangle$, where φ is s Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

<u>Output</u>: Yes iff φ is satisfiable.

To show a Karp reduction from 3SAT to CLIQUE, we need to:

1.

2.

3.

Strategy:

What is a "good" proof that $\langle \varphi \rangle \in 3$ SAT?

1. Construction of the map $f: \Sigma^* \to \Sigma^*$.

2. φ is satisfiable iff G_{φ} contains an *m*-clique.

3. Creation of G_{φ} is poly-time.

Proof of Cook-Levin Theorem (Super High Level)