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A = Tails was flipped Pr[A | E] = 3/5
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Conditional Probability –> Chain Rule

“For A and B to occur: 
    - first A must occur    (probability Pr[A]) 
    - then B must occur given that A occured 
      (probability Pr[B | A]).”

Pr[A \B] = Pr[A] · Pr[B | A]

Generalizes to more than two events.

Pr[A \B \ C] = Pr[A] · Pr[B | A] · Pr[C | A \B]

Intuition:
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Independence

Two events A and B are independent if

Pr[A | B] = Pr[A].

This is equivalent to:

Pr[B | A] = Pr[B].

This is equivalent to:

Pr[A \B] = Pr[A] · Pr[B]

(except that this can be used even when                                 or                   .)Pr[A] = 0 Pr[B] = 0
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Code Probability Tree=

- set of outcomes ⌦
- a prob. associated 
  with each outcome. 

SUMMARY SO FAR

 Events

 Conditional probability:
Pr[A | B] = Pr[A \B]/Pr[B]

 Chain rule:
Pr[A \B] = Pr[A] · Pr[B | A]

 Independent events:
Pr[A \B] = Pr[A] · Pr[B]
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Mathematical Model

Code Probability Tree=

- set of outcomes ⌦
- a prob. associated 
  with each outcome. 

SUMMARY SO FAR

 Events

 Conditional probability:
Pr[A | B] = Pr[A \B]/Pr[B]

 Chain rule:
Pr[A \B] = Pr[A] · Pr[B | A]

 Independent events:
Pr[A \B] = Pr[A] · Pr[B]

 Union bound:
Pr[A [B]  Pr[A] + Pr[B]
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X =  number of Tailstypical description:

new sample space

new prob. distribution

(values X can take)

range(X) ✓ R
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What is a Random Variable?

⌦ = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), 
 (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), 
 (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), 
 (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), 
 (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), 
 (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
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Why?

Often interested in numerical outcomes
(e.g.  # Tails we see if we toss n coins)

but initially outcomes are best expressed non-numerically.
(e.g.  an outcome is a sequence of n coin tosses)

We like talking about mean values (averages), variance, etc.

1.

2.
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What is a Random Variable?
S = RandInt(6) + RandInt(6)
if S == 12:   I = 1
else:             I = 0

S = 2
I = 0

S = 5
I = 0
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RandInt(6) … RandInt(6) RandInt(6)…
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S = 7
I = 0

S = 12
I = 1

S  7   is an event.   We can ask, what is  Pr[S  7]?≥ ≥
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Expected Value  =  Mean  =  (Weighted) Average

X

elements e

value(e) · weight(e)Weighted Average =

Weighted Average =

30% Final  
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Weight
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ValueExample:
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def
E[X] =
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x2range(X)
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1 x 1/2 +

2 x 1/4 =  1
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Expectation of a Random Variable

Let      be the outcome of the roll of a 6-sided die.X

= 1 · 1
6
+ 2 · 1

6
+ · · ·+ 6 · 1

6

= 1 · Pr[X = 1] + 2 · Pr[X = 2] + · · ·+ 6 · Pr[X = 6]E[X]

= 3.5

What is Pr[X = 3.5]?

(Don’t always expect the expected!)

X = RandInt(6)
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Expectation of a Random Variable

E[S]

Let     S = X + Y +Z

Let      = RandInt(6),          = RandInt(6),          = RandInt(6)X Y Z

= 3 · Pr[S = 3] + 4 · Pr[S = 4] + · · ·+ 18 · Pr[S = 18]

lot’s of arithmetic :-(

= 10.5
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Linearity of Expectation example

Let R1 = RandInt(6), R2 = RandInt(6), 
      S = R1+R2.

= 3.5 + 3.5

= 7
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Expectation of an Indicator

Fact:

Let A be an event, let X be its indicator rand. vbl.

Then E[X] = Pr[A].

Proof:
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Linearity of Expectation
+
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= best friends forever
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Linearity of Expectation + Indicators

There are 251 students in a class.
 

The TAs randomly permute their midterms 
       before handing them back.

Let X be the number of students getting  
       their own midterm back.

What is E[X]?
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2 1 3 1/6 1
2 3 1 1/6 0
3 1 2 1/6 0
3 2 1 1/6 1M

id
te

rm
  t

he
y 

go
t

∴ E[X] = (1/6)(3+1+1+0+0+1) = 1
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Now let’s do 251 students

Let Ai be the event that ith student gets own midterm.

Let Xi be the indicator of Ai.

Then X = X1 + X2 + ··· + X251

Thus E[X] = E[X1] + E[X2] + ··· + E[X251]
         by linearity of expectation

E[Xi] = Pr[Ai], and Pr[Ai] = 1/251   for each i.

∴ E[X] = 251 · (1/251) = 1



Questions



Can we go back to answering more questions in lecture?



I am still confused what is NP. After trying to get an intuition of its  
definition, I am still confused here.



I gave ChatGPT a piece a piece of code and it correctly told me that it  
wouldn't halt. I gave it a different piece of code and it correctly told me that  
it would. Does this mean ChatGPT can solve some instances of the halting  
problem?  

What does mean in the context of computability (ie this kind of  
seems to contradict that HALTS is undecidable so is AI changing the limits  
of what is computable by being "computationally stronger" than TMs?)?



What are some problems that were thought to be in NP but was actually in P?



What are ways that people attempt to prove P = NP? Is it just trying to  
develop polynomial-time algorithms for NP-complete problems, or are  
there other methods? 

From what was told in lecture, it seems like we are far from having the  
capabilities of answering the question of whether P = NP. If this is the case,  
is the question still worth pursuing? How much progress has been  
made in answering the question?



What other large complexity classes are there?



Why is clique no complete when clique 251 is in P?  
Isn’t clique 251 just clique with k = 251?



why do we need the first and last vertices to be unmatched in an  
augmenting path? Is the augmenting path only for characterization  
of maximum matching?



Why is Gale-Shapley even used if there are algorithms that can  
output "more even/fair" stable matchings, such that Y is not always  
matched with its worst valid partner?



Do you think humans are deterministic TMs or not?  
Can emotions be completely modeled?



Some More Random Variables
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Example

X ← RandInt(2) 

Y ← RandInt(X+1)

Question:    What is E[XY]? = 11/4

E[X] = 3/2

E[Y] = 7/4 (exercise)

Notice:  E[XY] ≠ E[X] E[Y]  in general!
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Linearity of Expectation

E[S] = E[X + Y +Z]

= E[X] +E[Y +Z]

= E[X] +E[Y ] +E[Z]

= 3.5 + 3.5 + 3.5

= 10.5

Let     S = X + Y +Z

Let      = RandInt(6),          = RandInt(6),          = RandInt(6)X Y Z
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Markov’s Inequality

A non-negative random variable 
is rarely much bigger than its 
expectation          .

X

E[X]

Pr[X � c ·E[X]]  1

c
.

Let      be a random variable that is always non-negative.X

Then for any           ,c � 1

Theorem:



Most Common 3 Random Variables



Bernoulli Random Variable



Bernoulli Random Variable
Math: X ⇠ Bernoulli(p)



Bernoulli Random Variable
Math: X ⇠ Bernoulli(p)

“     is a Bernoulli random variable with success probability    .” X p



Bernoulli Random Variable
Math: X ⇠ Bernoulli(p)

“     is a Bernoulli random variable with success probability    .” X p

Intuition: Flip a -biased coin. p



Bernoulli Random Variable
Math: X ⇠ Bernoulli(p)

“     is a Bernoulli random variable with success probability    .” X p

Code: X = Bernoulli(p)

Intuition: Flip a -biased coin. p



Bernoulli Random Variable
Math: X ⇠ Bernoulli(p)

“     is a Bernoulli random variable with success probability    .” X p

Code: X = Bernoulli(p)

Intuition: Flip a -biased coin. p

Properties:



Bernoulli Random Variable
Math: X ⇠ Bernoulli(p)

“     is a Bernoulli random variable with success probability    .” X p

Code: X = Bernoulli(p)

Intuition: Flip a -biased coin. p

range(X) = {0, 1}Properties:



Bernoulli Random Variable
Math: X ⇠ Bernoulli(p)

“     is a Bernoulli random variable with success probability    .” X p

Code: X = Bernoulli(p)

Intuition: Flip a -biased coin. p

Pr[X = 1] = p

range(X) = {0, 1}Properties:



Bernoulli Random Variable
Math: X ⇠ Bernoulli(p)

“     is a Bernoulli random variable with success probability    .” X p

Code: X = Bernoulli(p)

Intuition: Flip a -biased coin. p

Pr[X = 1] = p

Pr[X = 0] = 1� p

range(X) = {0, 1}Properties:



Bernoulli Random Variable
Math: X ⇠ Bernoulli(p)

“     is a Bernoulli random variable with success probability    .” X p

Code: X = Bernoulli(p)

Intuition: Flip a -biased coin. p

Pr[X = 1] = p

Pr[X = 0] = 1� p

range(X) = {0, 1}Properties:

E[X] = p
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Binomial Random Variable

Intuition: Flip n p-biased coins. Interested in number heads/successes. 

Math: X ⇠ Binomial(n, p)

Code: X = 0
repeat n times: 
    X += Bernoulli(p)
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Binomial Random Variable
Tree:

X = 1 X = 2X = 0 X = 1

Bernoulli(p)

Bernoulli(p)

Bernoulli(p)

0 1
p(1-p)

0 1
p(1-p)

0 1
p(1-p)

(0, 0, 0)

Bernoulli(p)

Bernoulli(p)

(0, 0, 1)

0 1
p(1-p)

(0, 1, 0) (0, 1, 1)

...

n = 3

Properties:

Pr[X = i] =

✓
n

i

◆
pi(1� p)n�i

range(X) = {0, 1, 2, . . . , n}

E[X] = np
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Geometric Random Variable

Intuition: Number of -biased coin flips until we see heads/success  
for the first time.

p

Math: X ⇠ Geometric(p)

Code: X = 1 
while Bernoulli(p) == 0:
    X += 1
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Geometric Random Variable
Tree: Bernoulli(p)

Bernoulli(p)

Bernoulli(p)

X = 1

0 1
p(1-p)

0 1
p(1-p)

0 1
p(1-p)

X = 2

X = 3...
range(X) = {1, 2, 3, . . .}

Pr[X = i] = (1� p)i�1p

E[X] = 1/p

Properties:



Next Time:

Introduction to Randomized Algorithms


