Randomness in Computer Science

•

•

•

•

•

•

•

•

Randomized Algorithms at a High Level

How can randomness be used in computation?

Given some algorithm that solves a problem:

1.

2.

A randomized algorithm is an algorithm that

Deterministic vs Randomized

Deterministic

```
def A(x):

y = 1

if(y == 0):

while(x > 0):

x = x - 1

return x+y
```

Randomized

```
def A(x):
    y = Bernoulli(0.5)
    if(y == 0):
        while(x > 0):
        x = x - 1
    return x+y
```

For any fixed input x (e.g. x = 3):

A deterministic algorithm A computes $f: \Sigma^* \to \Sigma^*$ in time T(n) if

- •
- •

What is the corresponding definition for randomized algorithm?

			$\forall x$	$\in \Sigma^*$	
		Correctn	ess	Ru	ın-time
Deterministic					
Randomized	Type 0 Type I Type 2 Type 3				
	Туре І				
	Type 2				
	Туре 3				

Battleship Example

Input: An array B with n/4 1's and 3n/4 0's.

Output: An index that contains a 1.

for i = 1 to n: if B[i] = 1: return i repeat 500 times: i = RandInt(n) if B[i] = 1: return i return "Failed" **repeat**: i = RandInt(n) **if** B[i] = 1: **return** i

for all inputs

_	Correctness	Run-time
Deterministic		
Monte Carlo		
Las Vegas		

Formal Definitions

Deterministic Algorithm

Let $f: \Sigma^* \to \Sigma^*$ be a computational problem. We say that a deterministic algorithm A computes f in time T(n) if:

Picture:

Monte Carlo Algorithm
Let $f: \Sigma^* \to \Sigma^*$ be a computational problem. We say that a randomized algorithm A is a $T(n)$ -time
Monte Carlo algorithm for f with ϵ error probability if:

Las Vegas Algorithm Let $f: \Sigma^* \to \Sigma^*$ be a computational problem. We say that a randomized algorithm A is a T(n)-time Las Vegas algorithm for f if:

Picture:

Picture:

Other Examples

Integer Factoring

isPrime

```
def isPrime(N):
  if (N < 2): return False
  maxFactor = round(N**0.5)
  for factor in range(2, maxFactor+1):
    if (N % factor == 0): return False
  return True</pre>
```

Generating a (random) n-bit prime