Randomized Approximation Algorithm for Max-Cut Problem

Input: Undirected graph G = (V, E). <u>Output</u>: Non-empty $S \subset V$ such that the number of edges between S and $V \setminus S$ is maximized. (i.e. number of "cut edges" is maximized)

Randomized Approximation Algorithm for Max-Cut:

Analysis for the expected number of cut edges:

Monte Carlo Algorithm for Min-Cut Problem

Input: Connected undirected graph G = (V, E). Output: Non-empty $S \subset V$ such that the number of edges between S and $V \setminus S$ is minimized. (i.e. number of "cut edges" is minimized)

Algorithm:

Number of iterations:

Observation:

Theorem.

Proof. <u>Obs 1:</u>

Boosting Phase:

$$A_i =$$

 $\mathbf{Pr}[\mathrm{error}] =$

World's most useful inequality:

