
Recitation - Finite Automata

1 Regular Announcements

• Homework solution sessions: Saturdays 15:30 - 16:30, Sundays 12:30 - 13:30. If you
cannot make it to the solution sessions, you can ask us about the solutions in office
hours. You can also ask your mentor TA for help. Just let us know.

• Homework resubmission deadline is Wednesday 19:00 (a week after the corre-
sponding homework-writing session).

• Homework regrade request deadline is Sunday 17:00 (4 days after the correspond-
ing homework-writing session).

• Come talk to us if you had difficulties on Homework 1!

2 Definitions for All

• Deterministic Finite Automaton (DFA): A DFAM is a machine that reads a finite-
length string one symbol at a time in one pass, transitions from state to state, and
ultimately accepts or rejects. Formally, M is a 5-tuple M = (Q,Σ, δ, q0, F), where

– Q is a finite, non-empty set of states;

– Σ is the finite, non-empty alphabet;

– δ : Q× Σ→ Q is the transition function;

– q0 ∈ Q is the starting state;

– F ⊆ Q is the set of accepting states;

• Given a DFA M , L(M) denotes the set of strings that the DFA accepts.

1

CMU CS251 Spring 2023

• Regular language: A language L is regular if L = L(M) for some DFA M (M
solves L).

• If L1 and L2 are both regular languages over Σ∗, for some fixed Σ, then the follow-
ing are all regular:

– L1 = Σ∗ \ L1,

– L1 ∪ L2,

– L1 ∩ L2,

– L1L2 (the concatenation of two regular languages),

– L∗1 (this is an exercise in the textbook; not an easy one though).

3 Odd Ones Out

Draw a DFA that decides the language

L = {x : x has an even number of 1s and an odd number of 0s}

over the alphabet Σ = {0, 1}.
Solution. https://www.youtube.com/embed/askcdLyrSGU

We have 4 states with the following meanings. The string we have seen so far has:

• even number of 0’s and even number of 1’s (state q0);

• even number of 0’s and odd number of 1’s (state q1);

• odd number of 0’s and even number of 1’s (state q2);

• odd number of 0’s and odd number of 1’s (state q3).

�

4 Adam, I’m Ada!

Show that, if |Σ| > 1, then

L = {x | x ∈ Σ∗ and x = xR}

is a non-regular language.

2

https://www.youtube.com/embed/askcdLyrSGU

CMU CS251 Spring 2023

Solution. https://www.youtube.com/embed/GWsKqabEsGE

Any string x that satisfies x = xR is called a palindrome.
As usual, we will prove that the language is non-regular by a proof by contradiction

and apply the pigeonhole principle (PHP). So assume for the sake of contradiction that
there exists a DFA with k states that solves L. Consider two distinct symbols a, b ∈ Σ
(since we assumed |Σ| > 1). Consider the k + 1 strings bna for n ∈ {0, . . . , k}. Since
there are only k states, by PHP, there must exist some i, j, 0 ≤ i < j ≤ k, such that bia
and bja end up in the same state. Thus, biabi and bjabi must end up in the same state.
However, biabi is a palindrome, so it should end up in an accepting state, and bjabi is not
a palindrome, so it should end up in a rejecting state. This is the desired contradiction
since a state cannot be both accepting and rejecting. �

5 Suffering with Suffixes

Given a word w, we say that u is a proper suffix of w if there is v 6= ε such that w = vu.
For a language L, define

SUFF(L) = {w ∈ L : no proper suffix of w is in L}.

Show that if L is regular, then so is SUFF(L), as follows. Give an exact description of a
DFA solving SUFF(L), explicitly stating how Q, δ, q0 and F are defined. Furthermore,
briefly explain the reasoning behind your construction. A detailed proof of correctness
is not needed.

Solution. https://www.youtube.com/embed/URld2_WcKyk

The construction is very similar to the construction we have seen for showing regular
languages are closed under the concatenation operation. In that proof, we opened up a
thread every time we encountered an accepting state of the first machine. In this case,
we will open up a new thread after reading each symbol. We now give the details.

Since L is regular, we know that there is some DFA M = (Q,Σ, δ, q0, F) that solves
L. Recall that for S ⊆ Q and σ ∈ Σ, we let δ℘(S, σ) = {δ(s, σ) : s ∈ S}. Now, we define
M ′ = (Q′,Σ, δ′, q′0, F

′) that solves SUFF(L) as follows:

• Q′ = Q× ℘(Q)

• For any q ∈ Q, S ⊆ Q, and σ ∈ Σ, define δ′((q, S), σ) = (δ(q, σ), δ℘(S, σ) ∪ {q0})

• q′0 = (q0,∅)

• F ′ = {(q, S) : q ∈ F, S ∩ F = ∅}

Intuitively, the first component of the state tuple (in M ′) keeps track of ‘the main thread’
(i.e. the computation of the DFA on the whole string), while the second component
keeps track of all the ‘suffix threads’ (i.e. the computation of the DFA on proper suffixes
of the whole string). The transition function is defined with this design in mind. At each
character, the main thread and each of the suffix threads takes one step; additionally, a
new suffix thread is started. In the end, we accept if and only if the main thread has
accepted and all the suffix threads have rejected. �

6 States for Days (Extra Problem)

The state complexity of a language is the minimum number of states in any DFA solving
the language. If a language is non-regular, then we define the state complexity to be
infinity.

To show that a language is non-regular, we have seen a proof strategy that can be
viewed as showing that the state complexity of the non-regular language is infinity. It

3

https://www.youtube.com/embed/GWsKqabEsGE
https://www.youtube.com/embed/URld2_WcKyk

CMU CS251 Spring 2023

turns out, the same kind of argument can be applied to regular languages to show a
lower bound on the state complexity of the language. In this problem, our goal will be
to illustrate this.

For any k ≥ 1, let

Rk = {x | x ∈ {0, 1}∗ and the k-th symbol from the right is a 1} .

Show that any DFA that solves Rk must have at least 2k states.

Solution. https://www.youtube.com/embed/q3N1RxmXjlU

Fix an arbitrary k ≥ 1. We will show that any DFA solving Rk must have at least 2k

states. To do this, we will identify 2k strings such that in any DFA solving the language,
these 2k strings, when fed into the DFA, must end up in different states.

Consider the set Bk of all binary strings of length k. Note that |Bk| = 2k. We claim
that in any DFA solving Rk, the strings in Bk must end up in different states. To prove
this, assume for the sake of contradiction that there are two strings x and y that end up
in the same state. Since x 6= y, there is some i such that xi 6= yi. Let’s now consider the
strings x′ = x0i and y′ = y0i. Observe that in x′ and y′, the bits xi and yi are the k’th
characters from the right. Since x and y end up in the same state, and we append the
same string 0i to both to obtain x′ and y′, we know x′ and y′ must end up in the same
state. However, since xi 6= yi, one of x′ and y′ ends up in an accepting state, and the
other in a rejecting state. This is the desired contradiction. �

7 Regular Expressions (Extra Problem)

As mentioned in class, regular languages can be defined recursively/inductively as fol-
lows:

• ∅ is regular.

• {a} for each a ∈ Σ is regular.

• If L1 and L2 are regular, then L1 ∪ L2 is regular.

• If L1 and L2 are regular, then L1L2 is regular.

• If L is regular, then L∗ is regular.

Often, regular languages are represented compactly using what is known as a regular
expression. We define regular expressions inductively as follows:

• Any single string is a regular expression (representing the singleton set containing
that string).

• If A and B are regular expressions, then (A+B) is a regular expression (represent-
ing the union of A and B).

• If A and B are regular expressions, then (AB) is a regular expression (representing
the concatenation of A and B).

• If A is a regular expression, then A∗ is the regular expression.

Noting the correspondence between the two inductive definitions above, a language is
regular if and only if it can be represented by a regular expression.

Here are a few shortcuts related to regular expressions. We use Σ to denote the regu-
lar expression corresponding to taking the union of all strings of length 1. So if Σ = {0, 1}
then Σ would denote (0 + 1). We also use Ak to denote the regular expression corre-
sponding to taking the concatenation of A with itself k times. Parentheses in regular
expressions can be omitted to reduce clutter, provided the removal does not introduce
any ambiguity.

For the problems below, you do not need to provide justifications for your answers.

4

https://www.youtube.com/embed/q3N1RxmXjlU

CMU CS251 Spring 2023

1. Let Σ = {0, 1}. For each regular expression below, describe in English the language
it represents.

• 1Σ∗

• Σ∗101Σ∗

• 1(00)∗1

• (Σ251)∗

2. Let Σ = {a, b}. Give a regular expression for the languages below.

• The set of all strings with a single a.

• The set of all strings that start and end with the same symbol.

• The set of all strings that contain at least two a’s and at most one b.

• The set of all strings containing an even number of a’s, an odd number of b’s,
and not containing the substring ab.

Solution. 1. • The set of all strings that start with a 1.

• The set of all strings that contain 101 as a substring.

• The set of all even-length strings that have exactly two 1’s, one at the start of
the string and one at the end.

• The set of all strings whose length is a multiple of 251.

2. • b∗ab∗

• aΣ∗a + bΣ∗b + a + b

• aa∗a + aaa∗ba∗ + aa∗ba∗a + a∗ba∗aa

• b(bb)∗(aa)∗

�

8 Multiple Multiples (Bonus)

Let Σ = {0, 1}. Define

C3 = {x ∈ Σ∗ : x is a binary number that is a multiple of 3}.

Show that C3 is regular.

Solution. https://www.youtube.com/embed/qZsZdqRm-Wc

Our set of states will be Q = {q0, q1, q2} corresponding to the possible remainders
modulo 3. We want the following property to hold: a string corresponding to the binary
representation of a number w should end on state qi if w ≡ i (mod 3). If we can establish
this, then we can set F = {q0}.

As we read a binary string s, we can determine what number/value it corresponds
to as follows: Start with value 0. Scan s from left to right. If we see a 0, multiply the
value by 2. If we see a 1, multiply the value by 2 and add 1. (Take a moment to verify
that this is true.)

With this observation in mind, we’ll define our transition function as follows. δ(qi, 0) =
q2i, and δ(qi, 1) = q2i+1, where indices of the q’s are taken modulo 3.

We leave the following as exercises for you: (i) Why is the above transition function
correct? (ii) Does the argument generalize to mod values other than 3? �

5

https://www.youtube.com/embed/qZsZdqRm-Wc

	Regular Announcements
	Definitions for All
	Odd Ones Out
	Adam, I'm Ada!
	Suffering with Suffixes
	States for Days (Extra Problem)
	Regular Expressions (Extra Problem)
	Multiple Multiples (Bonus)

