
Deterministic Finite Automata

1 Basic Definitions

Computational Model. Anything that processes information can be called a computer.
However, there can be restrictions on how the information can be processed (either uni-
versal restrictions imposed by, say, the laws of physics, or restrictions imposed by the
particular setting we are interested in).

A computational model is a set of allowed rules for information processing. Given
a computational model, we can talk about the computers (or machines) allowed by the
computational model. A computer is a specific instantiation of the computational model,
or in other words, it is a specific collection of information processing rules allowed by
the computational model.

Note that even though the terms “computer” and “machine” suggest a physical de-
vice, in this course we are not interested in physical representations that realize comput-
ers, but rather in the mathematical representations. The term algorithm is synonymous
to computer (and machine) and makes it more clear that we are not necessarily talking
about a physical device.

In this section we give the basic definitions regarding the computational model known
as deterministic finite automata.

Definition (Deterministic Finite Automaton (DFA)). A deterministic finite automaton (DFA)
M is a 5-tuple

M = (Q,Σ, δ, q0, F),

where

• Q is a non-empty finite set
(which we refer to as the set of states of the DFA);

• Σ is a non-empty finite set
(which we refer to as the alphabet of the DFA);

1

CMU CS251 Spring 2023

• δ is a function of the form δ : Q× Σ→ Q
(which we refer to as the transition function of the DFA);

• q0 ∈ Q is an element of Q
(which we refer to as the start state of the DFA);

• F ⊆ Q is a subset of Q
(which we refer to as the set of accepting states of the DFA).

Note (State diagram of a DFA). It is very common to represent a DFA with a state dia-
gram. Below is an example of how we draw a state diagram of a DFA:

In this example, Σ = {0, 1}, Q = {q0, q1, q2, q3}, F = {q1, q2}. The labeled arrows
between the states encode the transition function δ, which can also be represented with
a table as shown below (row qi ∈ Q and column b ∈ Σ contains δ(qi, b)).

The start state is labeled with q0, but if another label is used, we can identify the start
state in the state diagram by identifying the state with an arrow that does not originate
from another state and goes into that state.

Remark (The labels of DFA components). In the definition above, we used the labels
Q,Σ, δ, q0, F . One can of course use other labels when defining a DFA as long as it is
clear what each label represents.

Remark (Equivalence of DFAs). We’ll consider two DFAs to be equivalent/same if they
are the same machine up to renaming the elements of the sets Q and Σ. For instance, the
two DFAs below are considered to be the same even though they have different labels
on the states and use different alphabets.

The flexibility with the choice of labels allows us to be more descriptive when we define
a DFA. For instance, we can give labels to the states that communicate the “purpose” or
“role” of each state.

2

CMU CS251 Spring 2023

Definition (Computation path for a DFA). Let M = (Q,Σ, δ, q0, F) be a DFA and let
w = w1w2 · · ·wn be a string over an alphabet Σ (so wi ∈ Σ for each i ∈ {1, 2, . . . , n}). The
computation path of M with respect to w is a specific sequence of states r0, r1, r2, . . . , rn
(where each ri ∈ Q). We’ll often write this sequence as follows.

w1 w2 . . . wn

r0 r1 r2 . . . rn

These states correspond to the states reached when the DFA reads the input w one char-
acter at a time. This means r0 = q0, and

∀i ∈ {1, 2, . . . , n}, δ(ri−1, wi) = ri.

An accepting computation path is such that rn ∈ F , and a rejecting computation path is such
that rn 6∈ F .

We say that M accepts a string w ∈ Σ∗ (or “M(w) accepts”, or “M(w) = 1”) if the
computation path of M with respect to w is an accepting computation path. Otherwise,
we say that M rejects the string w (or “M(w) rejects”, or “M(w) = 0”).

Example (An example of a computation path). Let M = (Q,Σ, δ, q0, F) be the DFA in
Note (State diagram of a DFA). For ease of reference, we present the state diagram once
again here.

For input string w = 110110, the computation path of M with respect to w is

1 1 0 1 1 0

q0 q1 q2 q3 q2 q2 q3

Since q3 is not in F , this is a rejecting computation path, and therefore M rejects w, i.e.
M(w) = 0.

Note (Extended transition function). Let M = (Q,Σ, δ, q0, F) be a DFA. The transition
function δ : Q × Σ → Q extends to δ∗ : Q × Σ∗ → Q, where δ∗(q, w) is defined as the
state we end up in if we start at q and read the string w = w1 . . . wn. Or in other words,

δ∗(q, w) = δ(. . . δ(δ(δ(q, w1), w2), w3) . . . , wn).

The star in the notation can be dropped and δ can be overloaded to represent both a
function δ : Q× Σ→ Q and a function δ : Q× Σ∗ → Q. Using this notation, a word w is
accepted by the DFA M if δ(q0, w) ∈ F .

Definition (DFA solving a decision problem or a language). Let f : Σ∗ → {0, 1} be a
decision problem and let M be a DFA over the same alphabet. We say that M solves
(or decides, or computes) f if the input/output behavior of M matches f exactly, in the
following sense: for all w ∈ Σ∗, M(w) = f(w).

If L is the language corresponding to f , the above definition is equivalent to saying
that M solves (or decides, or computes) L if the following holds:

3

CMU CS251 Spring 2023

• if w ∈ L, then M accepts w (i.e. M(w) = 1);

• if w 6∈ L, then M rejects w (i.e. M(w) = 0).

Example (Even number of 1’s). The following DFA solves the language consisting of all
binary strings that contain an even number of 1’s.

Example (Ends with 00). The following DFA solves the language consisting of all binary
strings that end with 00.

Note (Uniqueness of the language of a DFA). For a DFA M , there is a unique language
L that M solves. This language is often denoted by L(M)1 and is referred to as the
language of M . Note that

L(M) = {w ∈ Σ∗ : M accepts w}.

Exercise (Describe the language of a DFA). For each DFA M below, define L(M).

1.

2.

Solution. 1. L(M) = {x ∈ {0, 1}∗ : x ends with a 0} ∪ {ε}.

2. L(M) = {a, b, cb, cc}.
�

1The letter L can be overloaded: we often use it to denote a language L ⊆ Σ∗, but in this notation, it
represents a function that maps a DFA to a language. Given the context, this overloading should not create
any ambiguity.

4

CMU CS251 Spring 2023

Exercise (Draw DFAs). For each language below (over the alphabet Σ = {0, 1}), draw a
DFA solving it.

1. {101, 110}

2. {0, 1}∗ \ {101, 110}

3. {x ∈ {0, 1}∗ : x starts and ends with the same bit}

4. {110}∗ = {ε, 110, 110110, 110110110, . . .}

5. {x ∈ {0, 1}∗ : x contains 110 as a substring}

Solution. 1. Below, all missing transitions go to a rejecting sink state (so the DFA ac-
tually has 6 states in total).

2. Take the DFA above and flip the accepting and rejecting states.

3.

4. Below, all missing transitions go to a rejecting sink state.

5.

5

CMU CS251 Spring 2023

�

Exercise (Finite languages can be solved by DFAs). Let L be a finite language, i.e., it
contains a finite number of words. At a high level, describe why there is a DFA solving
L.

Solution. It is a good idea to first think about whether languages of size 1 are regular.
Are languages of size 2 regular? When you draw DFAs for such languages, the basic
idea is to “hard-code” the words in the language into the state-diagram of the DFA (this
is what we did for part 1 of Exercise (Draw DFAs)). So for each word in the language,
there would be a path in the DFA corresponding to that word that ends in an accepting
state. This idea works whenever the language in consideration has a finite number of
words. The number of states in the DFA will depend on the number of words in the
language and the length of those words, but since the language is finite (and each word
has finite-length), all the words in the language can be hard-coded using a finite number
of states. �

Definition (Regular language). A language L ⊆ Σ∗ is called a regular language if there is
a deterministic finite automaton M that solves L.

Example (Some examples of regular languages). All the languages in Exercise (Draw
DFAs) are regular languages.

Exercise (Equal number of 01’s and 10’s). Let Σ = {0, 1}. Is the following language
regular?

L = {w ∈ {0, 1}∗ : w has an equal number of occurrences of 01 and 10 as substrings}

Hint. The language is regular. Go through some examples to see if you can notice a
pattern and come up with an alternate description for the language.

Solution. The answer is yes because the language is pretty much the same as the lan-
guage in Exercise (Draw DFAs), part 3 (except that the starting state should also be ac-
cepting). �

Definition (Complexity class REG). We denote by REG the set of all regular languages
(over the default alphabet Σ = {0, 1}).

2 Non-Regular Languages

Theorem (0n1n is not regular). Let Σ = {0, 1}. The language L = {0n1n : n ∈ N} is not
regular.

Proof. Our goal is to show that L = {0n1n : n ∈ N} is not regular. The proof is by
contradiction. So let’s assume that L is regular.

Since L is regular, by definition, there is some deterministic finite automaton M that
solves L. Let k denote the number of states of M . Consider the following set of k + 1

6

CMU CS251 Spring 2023

strings: P = {0n : n ∈ {0, 1, . . . , k}}. Each string in P , when fed as input to M , ends
up in one of the k states of M . By the pigeonhole principle2 (thinking of the strings as
pigeons and the states as holes), we know that there must be two strings in P that end
up in the same state. In other words, there are i, j ∈ {0, 1, . . . , k}, with i 6= j, such that
the string 0i and the string 0j end up in the same state. This implies that for any string
w ∈ {0, 1}∗, 0iw and 0jw end up in the same state. We’ll now reach a contradiction,
and conclude the proof, by considering a particular w such that 0iw and 0jw end up in
different states.

Consider the string w = 1i. Then sinceM solves L, we know 0iw = 0i1i must end up
in an accepting state. On the other hand, since i 6= j, 0jw = 0j1i is not in the language,
and therefore cannot end up in an accepting state. This is the desired contradiction.

Exercise (Would any set of pigeons work?). In the proof of the above theorem, we de-
fined the set P = {0n : n ∈ {0, 1, . . . , k}} and then applied the pigeonhole principle.
Explain why picking the following sets would not have worked in that proof.

1. P = {1n : n ∈ {1, 2, . . . , k + 1}}

2. P = {1, 11, 000, 0000, 00000, . . . , 0k+1}

Solution. 1. With P = {1n : n ∈ {1, 2, . . . , k + 1}} we can still apply the pigeonhole
principle to conclude that there are two strings 1i and 1j , i 6= j, that must end
up in the same state. However, to reach a contradiction, we need to find a string
w ∈ {0, 1}∗ such that exactly one of 1iw and 1jw is in the language, and the other
is not. On the other hand, any string starting with a 1 is not in the language.

2. The argument is the same as above, with the key observation being the following.
When we apply the pigeonhole principle to conclude that two strings in P must
end up in the same state, we have no control over which two strings in P end up in
the same state. Therefore, our argument must work no matter which two strings
in P end up in the same state. For the P given to us, the two strings that end up in
the same state could be 1 and 11, and so we would run into the same problem as
in the previous part.

�

Exercise (c251anb2n is not regular). Let Σ = {a, b, c}. Prove that L = {c251anb2n : n ∈ N}
is not regular.

Solution. Our goal is to show that L = {c251anb2n : n ∈ N} is not regular. The proof is
by contradiction. So let’s assume that L is regular.

Since L is regular, by definition, there is some deterministic finite automaton M that
solves L. Let k denote the number of states of M . For n ∈ N, let rn denote the state
that M reaches after reading c251an. By the pigeonhole principle, we know that there
must be a repeat among r0, r1, . . . , rk. In other words, there are i, j ∈ {0, 1, . . . , k} with
i 6= j such that ri = rj . This means that the string c251ai and the string c251aj end up
in the same state in M. Therefore, c251aiw and c251ajw, for any string w ∈ {a, b, c}∗, end
up in the same state in M . We’ll now reach a contradiction, and conclude the proof, by
considering a particular w such that c251aiw and c251ajw end up in different states.

Consider the string w = b2i. Then since M solves L, we know c251aiw = c251aib2i

must end up in an accepting state. On the other hand, since i 6= j, c251ajw = c251ajb2i

is not in the language, and therefore cannot end up in an accepting state. This is the
desired contradiction. �

2The pigeonhole principle states that if n items are put inside m containers, and n > m, then there must be at
least one container with more than one item. The name pigeonhole principle comes from thinking of the items
as pigeons, and the containers as holes. The pigeonhole principle is often abbreviated as PHP.

7

CMU CS251 Spring 2023

Exercise (A fooling pigeon set). In Exercise (Would any set of pigeons work?) we saw
that the “pigeon set” that we use to apply the pigeonhole principle must be chosen care-
fully. We’ll call a pigeon set a fooling pigeon set if it is a pigeon set that “works”. That
is, given a DFA with k states that is assumed to solve a non-regular L, a fooling pigeon
set of size k + 1 allows us to carry out the contradiction proof, and conclude that L is
non-regular. Identify the property that a fooling pigeon set should have.

Solution. A fooling pigeon set P is such that for all x, y ∈ P , there exists a z ∈ Σ∗ such
that exactly one of xz and yz is in L, and the other is not. (Note that the choice of z for
different pairs x and y may be different.)

The crux of a non-regularity proof is to show that for any k ∈ N (which denotes
the number of states of a DFA that is assumed to solve L), there is a fooling pigeon
set of size at least k + 1. Since k is arbitrary, showing that a language L is non-regular
really amounts to finding an infinite-size fooling pigeon set. In the case of the language
L = {0n1n : n ∈ N}, the infinite-size fooling pigeon set is {0n : n ∈ N}. �

Theorem (A unary non-regular language). Let Σ = {a}. The language L = {a2n : n ∈ N}
is not regular.

Proof. Our goal is to show that L = {a2n : n ∈ N} is not regular. The proof is by
contradiction. So let’s assume that L is regular.

Since L is regular, by definition, there is some deterministic finite automaton M that
solves L. Let k denote the number of states of M . For n ∈ N, let rn denote the state
that M reaches after reading a2

n

(i.e. rn = δ(q0, a
2n)). By the pigeonhole principle, we

know that there must be a repeat among r0, r1, . . . , rk (a sequence of k + 1 states). In
other words, there are indices i, j ∈ {0, 1, . . . , k}with i < j such that ri = rj . This means
that the string a2

i

and the string a2
j

end up in the same state in M . Therefore, a2
i

w

and a2
j

w, for any string w ∈ {a}∗, end up in the same state in M . We’ll now reach a
contradiction, and conclude the proof, by considering a particular w such that a2

i

w ends
up in an accepting state but a2

j

w ends up in a rejecting state (i.e. they end up in different
states).

Consider the string w = a2
i

. Then a2
i

w = a2
i

a2
i

= a2
i+1

, and therefore must end
up in an accepting state. On the other hand, a2

j

w = a2
j

a2
i

= a2
j+2i . We claim that this

word must end up in a rejecting state because 2j + 2i cannot be written as a power of 2
(i.e., cannot be written as 2t for some t ∈ N). To see this, note that since i < j, we have

2j < 2j + 2i < 2j + 2j = 2j+1,

which implies that if 2j + 2i = 2t, then j < t < j + 1 (which is impossible). So 2j + 2i

cannot be written as 2t for t ∈ N, and therefore a2
j+2i leads to a reject state in M as

claimed.

Note (Lower-bounding the number of states). In the next exercise, we’ll write the proof
in a slightly different way to offer a slightly different perspective. In particular, we’ll
phrase the proof such that the goal is to show no DFA solving L can have a finite number
of states. This is done by identifying an infinite set of strings that all must end up in
a different state (this is the fooling pigeon set that we defined in Exercise (A fooling
pigeon set)). Once you have a set of strings S such that every string in S must end up in
a different state, we can conclude any DFA solving the language must have at least |S|
states.

This slight change in phrasing of the non-regularity proof makes it clear that even if
L is regular, the technique can be used to prove a lower bound on the number of states
of any DFA solving L.

Exercise (anbncn is not regular). Let Σ = {a, b, c}. Prove that L = {anbncn : n ∈ N} is
not regular.

8

CMU CS251 Spring 2023

Solution. Our goal is to show that L = {anbncn : n ∈ N} is not regular. Consider the set
of strings P = {an : n ∈ N}. We claim that in any DFA solving L, no two strings in P
can end up in the same state. To prove this claim, let’s go by contradiction, and assume
that there are two strings in P , ai and aj , i 6= j, that end up in the same state. Then for
any w ∈ Σ∗, the strings aiw and ajw must end up in the same state. But for w = bici,
aiw = aibici must end up in an accepting state, whereas ajw = ajbici must end up in a
rejecting state. This is a contradiction.

Since we have identified an infinite set of strings that all must end up in a different
state, we conclude that there cannot be a DFA solving L, since by definition, DFAs have
a finite number of states. �

3 Closure Properties of Regular Languages

In this section we will be interested in the following question. Given regular languages,
what operations can we apply to them (e.g. union, intersection, concatenation, etc.) so
that the resulting language is also regular?

Exercise (Are regular languages closed under complementation?). Is it true that if L is
regular, then its complement Σ∗\L is also regular? In other words, are regular languages
closed under the complementation operation?

Hint. The answer is yes. How can you modify the DFA for L to construct a DFA for
Σ∗ \ L?

Solution. Yes. If L is regular, then there is a DFA M = (Q,Σ, δ, q0, F) solving L. The
complement ofL is solved by the DFAM = (Q,Σ, δ, q0, Q\F). Take a moment to observe
that this exercise allows us to say that a language is regular if and only if its complement
is regular. Equivalently, a language is not regular if and only if its complement is not
regular. �

Exercise (Are regular languages closed under subsets?). Is it true that if L ⊆ Σ∗ is a
regular language, then any L′ ⊆ L is also a regular language?

Hint. The answer is no. Try to think of a counter example.

Solution. No. For example, L = Σ∗ is a regular language (construct a single state DFA
in which the state is accepting). On the other hand, by Theorem (0n1n is not regular),
{0n1n : n ∈ N} ⊆ {0, 1}∗ is not regular. �

Theorem (Regular languages are closed under union). Let Σ be some finite alphabet. If
L1 ⊆ Σ∗ and L2 ⊆ Σ∗ are regular languages, then the language L1 ∪ L2 is also regular.

Proof. Given regular languages L1 and L2, we want to show that L1∪L2 is regular. Since
L1 and L2 are regular languages, by definition, there are DFAs M = (Q,Σ, δ, q0, F) and
M ′ = (Q′,Σ, δ′, q′0, F

′) that solve L1 and L2 respectively (i.e. L(M) = L1 and L(M ′) =
L2). To show L1 ∪ L2 is regular, we’ll construct a DFA M ′′ = (Q′′,Σ, δ′′, q′′0 , F

′′) that
solves L1 ∪ L2. The definition of M ′′ will make use of M and M ′.

The idea behind the construction of M ′′ is as follows. To figure out if a string w is in
L1∪L2, we can runM(w) andM ′(w) to see if at least one of them accepts. However, that
would require scanning w twice, which is something a DFA cannot do. Therefore, the
main trick is to simulate bothM(w) andM ′(w) simultaneously. For this, we can imagine
having one thread for M(w) and another thread for M ′(w) that we run together. We can
write the computation paths corresponding to the threads as follows.

w1 w2 w3 . . . wn

thread 1: r0 r1 r2 r3 . . . rn
thread 2: s0 s1 s2 s3 . . . sn

9

CMU CS251 Spring 2023

Here, thread 1 represents a computation path for M and thread 2 represents a computa-
tion path for M ′. We want the above to represent the computation path of a single DFA
M ′′ (and we want to know if one of the threads is an accepting computation path). We
can accomplish this by viewing the combination of states (ri, si) as a single state of M ′′.
And when we read a symbol wi+1, we update ri according to the transition function of
M , and we update si according to the transition function of M ′. In more detail:

• The set of states is Q′′ = Q × Q′ = {(q, q′) : q ∈ Q, q′ ∈ Q′}. (Note that in the
definition of a DFA, we can use any fixed finite set as the set of states. It does not
matter if a state is represented as a tuple or some other object; you could rename
them to be of the form q′′i if you wanted.)

• The transition function δ′′ is defined such that for all (q, q′) ∈ Q′′ and for all σ ∈ Σ,

δ′′((q, q′), σ) = (δ(q, σ), δ′(q′, σ)).

(Note that for w ∈ Σ∗, δ′′((q, q′), w) = (δ(q, w), δ′(q′, w)).)

• The initial state is q′′0 = (q0, q
′
0).

• The set of accepting states is F ′′ = {(q, q′) : q ∈ F or q′ ∈ F ′}.

This completes the definition of M ′′.3 It remains to show that M ′′ indeed solves the
language L1 ∪ L2, i.e. L(M ′′) = L1 ∪ L2. We will first argue that L1 ∪ L2 ⊆ L(M ′′) and
then argue that L(M ′′) ⊆ L1 ∪ L2. Both inclusions will follow easily from the definition
of M ′′ and the definition of a DFA accepting a string.

L1 ∪ L2 ⊆ L(M ′′): Suppose w ∈ L1 ∪ L2, which means w either belongs to L1 or it
belongs to L2. Our goal is to show that w ∈ L(M ′′). Without loss of generality, assume w
belongs to L1, or in other words,M acceptsw (the argument is essentially identical when
w belongs to L2). So we know that δ(q0, w) ∈ F . By the definition of δ′′, δ′′((q0, q′0), w) =
(δ(q0, w), δ′(q′0, w)). And since δ(q0, w) ∈ F , (δ(q0, w), δ′(q′0, w)) ∈ F ′′ (by the definition
of F ′′). So w is accepted by M ′′ as desired.

L(M ′′) ⊆ L1 ∪ L2: Suppose that w ∈ L(M ′′). Our goal is to show that w ∈ L1 or w ∈
L2. Since w is accepted by M ′′, we know that δ′′((q0, q′0), w) = (δ(q0, w), δ′(q′0, w)) ∈ F ′′.
By the definition of F ′′, this means that either δ(q0, w) ∈ F or δ′(q′0, w) ∈ F ′, i.e., w is
accepted by M or M ′. This implies that either w ∈ L(M) = L1 or w ∈ L(M ′) = L2, as
desired.

Corollary (Regular languages are closed under intersection). Let Σ be some finite alphabet.
If L1 ⊆ Σ∗ and L2 ⊆ Σ∗ are regular languages, then the language L1 ∩ L2 is also regular.

Proof. We want to show that regular languages are closed under the intersection opera-
tion. We know that regular languages are closed under union and closed under comple-
mentation. The result then follows since A ∩B = A ∪B.

Exercise (Direct proof that regular languages are closed under difference). Give a direct
proof (without using the fact that regular languages are closed under complementation,
union and intersection) that if L1 and L2 are regular languages, then L1 \ L2 is also
regular.

3At this point, it would be reasonable to end the proof and say that the construction of M ′′ is correct
based on our discussion earlier that motivates the construction. It is also reasonable to spell out the proof of
correctness, as we do here. In situations like these, in an introductory course like this one, we recommend you
err on the side of caution and spell out the correctness proof.

10

CMU CS251 Spring 2023

Solution. The proof is very similar to the proof of Theorem (Regular languages are closed
under union). The only difference is the definition of F ′′, which now needs to be defined
as

F ′′ = {(q, q′) : q ∈ F and q′ ∈ Q′ \ F ′}.

The argument that L(M ′′) = L(M)\L(M ′) needs to be slightly adjusted in order to agree
with F ′′. �

Exercise (Finite vs infinite union). 1. SupposeL1, . . . , Lk are all regular languages. Is
it true that their union

⋃k
i=0 Li must be a regular language?

2. Suppose L0, L1, L2, . . . is an infinite sequence of regular languages. Is it true that
their union

⋃
i≥0 Li must be a regular language?

Hint. The first one is “yes” (think induction) and the second one is “no” (give a counter-
example).

Solution. In part 1, we are asking whether a finite union of regular languages is regular.
The answer is yes, and this can be proved using induction, where the base case cor-
responds to a single regular language, and the induction step corresponds to Theorem
(Regular languages are closed under union). In part 2, we are asking whether a count-
ably infinite union of regular languages is regular. The answer is no. First note that any
language of cardinality 1 is regular, i.e., {w} for any w ∈ Σ∗ is a regular language. In
particular, for any n ∈ N, the language Ln = {0n1n} of cardinality 1 is regular. But⋃

n≥0

Ln = {0n1n : n ∈ N}

is not regular. �

Exercise (Union of non-regular languages). Suppose L1 and L2 are not regular lan-
guages. Is it always true that L1 ∪ L2 is not a regular language?

Hint. No. Come up with a counter-example. You can try to find one such that L1 ∪L2 is
Σ∗.

Solution. The answer is no. Consider L = {0n1n : n ∈ N}, which is a non-regular
language. Furthermore, the complement of L, which is L = Σ∗ \ L, is non-regular. This
is because regular languages are closed under complementation (Exercise (Are regular
languages closed under complementation?)), so if L was regular, then L = L would also
have to be regular. The union of L and L is Σ∗, which is a regular language. �

Exercise (Regularity of suffixes and prefixes). Suppose L ⊆ Σ∗ is a regular language.
Show that the following languages are also regular:

SUFFIXES(L) = {x ∈ Σ∗ : yx ∈ L for some y ∈ Σ∗},
PREFIXES(L) = {y ∈ Σ∗ : yx ∈ L for some x ∈ Σ∗}.

Solution. Let M = (Q,Σ, δ, q0, F) be a DFA solving L. We define S ⊆ Q to be the set of
states that are “reachable” starting from the initial state q0. More precisely,

S = {s ∈ Q : ∃y ∈ Σ∗ such that δ(q0, y) = s}.

Define a DFA for each s ∈ S as follows: Ms = (Q,Σ, δ, s, F), so the only difference
between Ms and M is the starting/initial state. We claim that

SUFFIXES(L) =
⋃
s∈S

L(Ms).

11

CMU CS251 Spring 2023

We now prove this equality by a double containment argument.
First, if x ∈ SUFFIXES(L) then you know that there is some y ∈ Σ∗ such that yx ∈ L.

So M(yx) accepts. Note that this y, when fed into M , ends up in some state. Let’s call
that state s. Then Ms accepts x, i.e. x ∈ L(Ms). And therefore x ∈

⋃
s∈S L(Ms).

On the other hand suppose x ∈
⋃

s∈S L(Ms). Then there is some state s ∈ S such
that x ∈ L(Ms). By the definition of S, there is some string y such that M(y) ends up in
state s. Since x is accepted by Ms, we have that yx is accepted by M , i.e. yx ∈ L. By the
definition of SUFFIXES(L), this implies x ∈ SUFFIXES(L). This concludes the proof of
the claim.

Since L(Ms) is regular for all s ∈ S and S is a finite set, using Exercise (Finite vs
infinite union) part 1, we can conclude that SUFFIXES(L) is regular.

For the second part, define the set

R = {r ∈ Q : ∃x ∈ Σ∗ such that δ(r, x) ∈ F}.

Now we can define the DFAMR = (Q,Σ, δ, q0, R). Observe that this DFA solves PREFIXES(L),
which shows that PREFIXES(L) is regular. �

Theorem (Regular languages are closed under concatenation). If L1, L2 ⊆ Σ∗ are regular
languages, then the language L1L2 is also regular.

Proof. Given regular languages L1 and L2, we want to show that L1L2 is regular. Since
L1 and L2 are regular languages, by definition, there are DFAs M = (Q,Σ, δ, q0, F) and
M ′ = (Q′,Σ, δ′, q′0, F

′) that solves L1 and L2 respectively. To show L1L2 is regular, we’ll
construct a DFA M ′′ = (Q′′,Σ, δ′′, q′′0 , F

′′) that solves L1L2. The definition of M ′′ will
make use of M and M ′.

Before we formally define M ′′, we will introduce a few key concepts and explain the
intuition behind the construction.

We know that w ∈ L1L2 if and only if there is a way to write w as uv where u ∈ L1

and v ∈ L2. With this in mind, we make the following definition. Given a word w =
w1w2 . . . wn ∈ Σ∗, a concatenation thread with respect to w is a sequence of states

r0, r1, r2, . . . , ri, si+1, si+2, . . . , sn,

where r0, r1, . . . , ri is an accepting computation path of M with respect to w1w2 . . . wi,
and q′0, si+1, si+2, . . . , sn is a computation path (not necessarily accepting) of M ′ with re-
spect to wi+1wi+2 . . . wn. A concatenation thread like this corresponds to simulating M
on w1w2 . . . wi (at which point we require that an accepting state of M is reached), and
then simulating M ′ on wi+1wi+2 . . . wn. So a concatenation thread is really a concatena-
tion of a thread in M with a thread in M ′.

For each way of writingw as uv where u ∈ L1, there is a corresponding concatenation
thread for it. Note that w ∈ L1L2 if and only if there is a concatenation thread in which
sn ∈ F ′. Our goal is to construct the DFA M ′′ such that it keeps track of all possible
concatenation threads, and if one of the threads ends with a state in F ′, thenM ′′ accepts.

At first, it might seem like one cannot keep track of all possible concatenation threads
using only constant number of states. However, this is not the case. Let’s identify a
concatenation thread with its sequence of sj ’s (i.e. the sequence of states from Q′ corre-
sponding to the simulation of M ′). Consider two concatenation threads (for the sake of
example, let’s take n = 10):

s3, s4,s5, s6, s7, s8, s9, s10

s′5, s
′
6, s
′
7, s
′
8, s
′
9, s
′
10

If, say, si = s′i = q′ ∈ Q′ for some i, then sj = s′j for all j > i (in particular, s10 = s′10). At
the end, all we care about is whether s10 or s′10 is an accepting state of M ′. So at index
i, we do not need to remember that there are two copies of q′; it suffices to keep track
of one copy. In general, at any index i, when we look at all the possible concatenation

12

CMU CS251 Spring 2023

threads, we want to keep track of the unique states that appear at that index, and not
worry about duplicates. Since we do not need to keep track of duplicated states, what
we need to remember is a subset ofQ′ (recall that a set cannot have duplicated elements).

The construction ofM ′′ we present below keeps track of all the concatenation threads
using a constant number of states. The strategy is to keep a single thread for the machine
M , and then separate threads for machine M ′ that will correspond to the M ′ portions of
the different concatenation threads. So the set of states is4

Q′′ = Q× ℘(Q′) = {(q, S) : q ∈ Q,S ⊆ Q′},

where the first component keeps track of the state we are at in M , and the second com-
ponent keeps track of all the unique states of M ′ that we can be at if we are following
one of the possible concatenation threads.

Before we present the formal definition of M ′′, we introduce one more definition.
Recall that the transition function of M ′ is δ′ : Q′ × Σ → Q′. Using δ′ we define a new
function δ′℘ : ℘(Q′)×Σ→ ℘(Q′) as follows. For S ⊆ Q′ and σ ∈ Σ, δ′℘(S, σ) is defined to
be the set of all possible states that we can end up at if we start in a state in S and read
the symbol σ. In other words,

δ′℘(S, σ) = {δ′(q′, σ) : q′ ∈ S}.

It is appropriate to view δ′℘ as an extension/generalization of δ′.
Here is the formal definition of M ′′:

• The set of states is Q′′ = Q× ℘(Q′) = {(q, S) : q ∈ Q,S ⊆ Q′}.
(The first coordinate keeps track of which state we are at in the first machine M ,
and the second coordinate keeps track of the set of states we can be at in the second
machine M ′ if we follow one of the possible concatenation threads.)

• The transition function δ′′ is defined such that for (q, S) ∈ Q′′ and σ ∈ Σ,

δ′′((q, S), σ) =

{
(δ(q, σ), δ′℘(S, σ)) if δ(q, σ) 6∈ F,
(δ(q, σ), δ′℘(S, σ) ∪ {q′0}) if δ(q, σ) ∈ F.

(The first coordinate is updated according to the transition rule of the first machine.
The second coordinate is updated according to the transition rule of the second
machine. Since for the second machine, we are keeping track of all possible states
we could be at, the generalized transition function δ′℘ gives us all possible states
we can go to when reading a character σ. Note that if after applying δ to the first
coordinate, we get a state that is an accepting state of the first machine, a new
thread in M ′ must be created, which corresponds to a new concatenation thread
that we need to keep track of. This is accomplished by adding q′0 to the second
coordinate.)

• The initial state is

q′′0 =

{
(q0,∅) if q0 6∈ F,
(q0, {q′0}) if q0 ∈ F.

(Initially, if q0 6∈ F , then there are no concatenation threads to keep track of, so
the second coordinate is the empty set. On the other hand, if q0 ∈ F , then there is
already a concatenation thread that we need to keep track of – the one correspond-
ing to running the whole input word w on the second machine – so we add q′0 to
the second coordinate to keep track of this thread.)

• The set of accepting states is F ′′ = {(q, S) : q ∈ Q,S ⊆ Q′, S ∩ F ′ 6= ∅}.
(In other words, M ′′ accepts if and only if there is a state in the second coordinate
that is an accepting state of the second machine M ′. So M ′′ accepts if and only if
one of the possible concatenation threads ends in an accepting state of M ′.)

4Recall that for any set Q, the set of all subsets of Q is called the power set of Q, and is denoted by ℘(Q).

13

CMU CS251 Spring 2023

This completes the definition of M ′′. To see that M ′′ indeed solves the language
L1L2, i.e. L(M ′′) = L1L2, note that by construction, M ′′ with input w, does indeed keep
track of all the possible concatenation threads. And it accepts w if and only if one of
those concatenation threads ends in an accepting state of M ′. The result follows since
w ∈ L1L2 if and only if there is a concatenation thread with respect to w that ends in an
accepting state of M ′.

We defined a generalized transition function in the proof of the above theorem. This
is a useful definition and we will be using it multiple times in what comes next. There-
fore we repeat the definition below.

Definition (Generalized transition function). Let M = (Q,Σ, δ, q0, F) be a DFA. We de-
fine the generalized transition function δ℘ : ℘(Q) × Σ → ℘(Q) as follows. For S ⊆ Q and
σ ∈ Σ,

δ℘(S, σ) = {δ(q, σ) : q ∈ S}.

Exercise (Regular languages are closed under concatenation - another construction). In
the proof of Theorem (Regular languages are closed under concatenation), we defined
the set of states for the DFA solving L1L2 as Q′′ = Q× ℘(Q′). Construct a DFA for L1L2

in which Q′′ is equal to ℘(Q∪Q′), i.e., specify how δ′′, q′′0 and F ′′ should be defined with
respect to Q′′ = ℘(Q ∪Q′). Proof of correctness is not required.

Solution. As before, we have DFAs M = (Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F
′) solv-

ing L1 and L2 respectively. The construction for L1L2 is as follows. We are given that
the set of states is

Q′′ = ℘(Q ∪Q′).

To define the transition function, let S′′ ∈ Q′′ = ℘(Q∪Q′) and σ ∈ Σ. Write S′′ as S ∪S′,
where S ⊆ Q and S′ ⊆ Q′. Then,

δ′′(S ∪ S′, σ) =

{
δ℘(S, σ) ∪ δ′℘(S′, σ) ∪ {q′0} if δ℘(S, σ) ∩ F 6= ∅,
δ℘(S, σ) ∪ δ′℘(S′, σ) otherwise.

The initial state is

q′′0 =

{
{q0, q′0} if q0 ∈ F,
{q0} if q0 6∈ F.

And the set of accepting states is

F ′′ = {S ∈ Q′′ : S ∩ F ′ 6= ∅}.

Note that this construction is not really much different from the construction given in
the proof of Theorem (Regular languages are closed under concatenation) because the
way the initial state and the transition function is defined, a state S′′ will always have a
single element from Q. So one can view S′′ as an element of Q× ℘(Q′). �

Exercise (Regular languages are closed under star - wrong proof). Critique the follow-
ing argument that claims to establish that regular languages are closed under the star
operation, that is, if L is a regular language, then so is L∗.

Let L be a regular language. We know that by definition L∗ =
⋃

n∈N L
n,

where
Ln = {u1u2 . . . un : ui ∈ L for all i}.

We know that for all n, Ln must be regular using Theorem (Regular lan-
guages are closed under concatenation). And since Ln is regular for all n,
we know L∗ must be regular using Theorem (Regular languages are closed
under union).

14

CMU CS251 Spring 2023

Solution. It is true that using induction, we can show that Ln is regular for all n. How-
ever, from there, we cannot conclude that L∗ =

⋃
n∈N L

n is regular. Even though regular
languages are closed under finite unions, they are not closed under infinite unions. See
Exercise (Finite vs infinite union). �

Exercise (Regular languages are closed under star - correct proof). Show that regular
languages are closed under the star operation as follows: First show that if L is regular,
then so is L+, which is defined as the union

L+ =
⋃

n∈N+

Ln.

For this part, given a DFA for L, show how to construct a DFA for L+. A proof of
correctness is not required. In order to conclude that L∗ is regular, observe that L∗ =
L+ ∪ {ε}, and use the fact that regular languages are closed under union.

Solution. We construct a DFA M ′ = (Q′,Σ, δ′, q′0, F
′) solving L+ using a DFA M =

(Q,Σ, δ, q0, F) that solves L. The construction is as follows.

Q′ = ℘(Q).

So the elements of Q′ are subsets of Q. To define the transition function, for any S ⊆ Q
and any σ ∈ Σ, let

δ′(S, σ) =

{
δ℘(S, σ) ∪ {q0} if δ℘(S, σ) ∩ F 6= ∅,
δ℘(S, σ) otherwise.

The initial state is q′0 = {q0}. And the set of accepting states is

F ′ = {S ⊆ Q : S ∩ F 6= ∅}.

�

4 Bonus: Non-Deterministic FA

To be added.

5 Check Your Understanding

Problem. 1. What are the 5 components of a DFA?

2. Let M be a DFA. What does L(M) denote?

3. Draw a DFA solving ∅. Draw a DFA solving Σ∗.

4. True or false: Given a language L, there is at most one DFA that solves it.

5. Fix some alphabet Σ. How many DFAs are there with exactly one state?

6. True or false: For any DFA, all the states are “reachable”. That is, ifD = (Q,Σ, δ, q0, F)
is a DFA and q ∈ Q is one of its states, then there is a string w ∈ Σ∗ such that
δ∗(q0, w) = q.

7. What is the set of all possible inputs for a DFA D = (Q,Σ, δ, q0, F)?

8. Consider the set of all DFAs with k states over the alphabet Σ = {a} such that all
states are reachable from q0. What is the cardinality of this set?

9. What is the definition of a regular language?

15

CMU CS251 Spring 2023

10. Describe the general strategy (the high level steps) for showing that a language is
not regular.

11. Give 3 examples of non-regular languages.

12. Let L ⊆ {a}∗ be a language consisting of all strings of a’s of odd length except
length 251. Is L regular?

13. Let L be the set of all strings in {0, 1}∗ that contain at least 251 0’s and at most 251
1’s. Is L regular?

14. Suppose you are given a regular language L and you are asked to prove that any
DFA solving L must contain at least k states (for some k value given to you). What
is a general proof strategy for establishing such a claim?

15. LetM = (Q,Σ, δ, q0, F) be a DFA solving a languageL and letM ′ = (Q′,Σ, δ′, q′0, F
′)

be a DFA solving a languageL′. Describe the 5 components of a DFA solvingL∪L′.

16. True or false: Let L1 ⊕ L2 denote the set of all words in either L1 or L2, but not
both. If L1 and L2 are regular, then so is L1 ⊕ L2.

17. True or false: For languages L and L′, if L ⊆ L′ and L is non-regular, then L′ is
non-regular.

18. True or false: If L ⊆ Σ∗ is non-regular, then L = Σ∗ \ L is non-regular.

19. True or false: If L1, L2 ⊆ Σ∗ are non-regular languages, then so is L1 ∪ L2.

20. True or false: Let L be a non-regular language. There exists K ⊂ L, K 6= L, such
that K is also non-regular.

21. By definition a DFA has finitely many states. What is the motivation/reason for
this restriction?

22. Consider the following decision problem: Given as input a DFA, output True if
and only if there exists some string s ∈ Σ∗ that the DFA accepts. Write the lan-
guage corresponding to this decision problem using mathematical notation, and
in particular, using set builder notation.

6 High-Order Bits

Important. Here are the important things to keep in mind from this chapter.

1. Given a DFA, describe in English the language that it solves.

2. Given the description of a regular language, come up with a DFA that solves it.

3. Given a non-regular language, prove that it is indeed non-regular. Make sure you
are not just memorizing a template for these types of proofs, but that you under-
stand all the details of the strategy being employed. Apply the Feynman technique
and see if you can teach this kind of proof to someone else.

4. In proofs establishing a closure property of regular languages, you start with one
or more DFAs, and you construct a new one from them. In order to build the new
DFA successfully, you have to be comfortable with the 5-tuple notation of a DFA.
The constructions can get notation-heavy (with power sets and Cartesian prod-
ucts), but getting comfortable with mathematical notation is one of our learning
objectives.

5. With respect to closure properties of regular languages, prioritize having a very
solid understanding of closure under the union operation before you move to the
more complicated constructions for the concatenation operation and star opera-
tion.

16

https://en.wikipedia.org/wiki/Set-builder_notation

	Basic Definitions
	Non-Regular Languages
	Closure Properties of Regular Languages
	Bonus: Non-Deterministic FA
	Check Your Understanding
	High-Order Bits

